本文整理汇总了Python中sage.rings.arith.divisors函数的典型用法代码示例。如果您正苦于以下问题:Python divisors函数的具体用法?Python divisors怎么用?Python divisors使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了divisors函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: submodule_generated_by_images
def submodule_generated_by_images(self, M):
"""
Return the submodule of this ambient modular symbols space
generated by the images under all degeneracy maps of M. The space M
must have the same weight, sign, and group or character as this
ambient space.
EXAMPLES::
sage: ModularSymbols(6, 12).submodule_generated_by_images(ModularSymbols(1,12))
Modular Symbols subspace of dimension 12 of Modular Symbols space of dimension 22 for Gamma_0(6) of weight 12 with sign 0 over Rational Field
"""
S = self.zero_submodule()
if self.level() % M.level() == 0:
D = arith.divisors(self.level() // M.level())
elif M.level() % self.level() == 0:
D = arith.divisors(M.level() // self.level())
else:
D = []
for t in D:
d = M.degeneracy_map(self, t)
if d.codomain() != self:
raise ArithmeticError, "incompatible spaces of modular symbols"
S += d.image()
if self.is_full_hecke_module(compute=False):
S._is_full_hecke_module = True
return S
示例2: find_product_decomposition
def find_product_decomposition(g, k, lmbda=1):
r"""
Try to find a product decomposition construction for difference matrices.
INPUT:
- ``g,k,lmbda`` -- integers, parameters of the difference matrix
OUTPUT:
A pair of pairs ``(g1,lmbda),(g2,lmbda2)`` if Sage knows how to build
`(g1,k,lmbda1)` and `(g2,k,lmbda2)` difference matrices and ``False``
otherwise.
EXAMPLES::
sage: from sage.combinat.designs.difference_matrices import find_product_decomposition
sage: find_product_decomposition(77,6)
((7, 1), (11, 1))
sage: find_product_decomposition(616,7)
((7, 1), (88, 1))
sage: find_product_decomposition(24,10)
False
"""
for lmbda1 in divisors(lmbda):
lmbda2 = lmbda//lmbda1
# To avoid infinite loop:
# if lmbda1 == lmbda, then g1 should not be g
# if lmbda2 == lmbda, then g2 should not be g
if lmbda1 == lmbda:
if lmbda2 == lmbda:
div = divisors(g)[1:-1]
else:
div = divisors(g)[:-1]
else:
if lmbda2 == lmbda:
div = divisors(g)[1:]
else:
div = divisors(g)
for g1 in div:
g2 = g//g1
if g1 > g2:
break
if (difference_matrix(g1,k,lmbda1,existence=True) and
difference_matrix(g2,k,lmbda2,existence=True)):
return (g1,lmbda1),(g2,lmbda2)
return False
示例3: test_Hecke_relations
def test_Hecke_relations(a,b,C):
r"""Testing Hecke relations for the Fourier coefficients in C
INPUT:
-''C'' -- dictionary of complex (Fourier coefficients)
-''a'' -- integer
-''b'' -- integer
OUTPUT:
-''diff'' -- real : |C(a)C(b)-C(ab)| if (a,b)=1
EXAMPLE::
sage: S=MaassWaveForms(Gamma0(1))
sage: R=mpmath.mpf(9.53369526135355755434423523592877032382125639510725198237579046413534)
sage: Y=mpmath.mpf(0.85)
sage: C=coefficients_for_Maass_waveforms(S,R,Y,10,20,12)
sage: d=test_Hecke_relations(C,2,3); mppr(d)
'9.29e-8'
sage: C=coefficients_for_Maass_waveforms(S,R,Y,30,50,20)
sage: d=test_Hecke_relations(C,2,3); mppr(d)
'3.83e-43'
"""
c=gcd(Integer(a),Integer(b))
lhs=C[0][a]*C[0][b]
rhs=mpmath.mpf(0)
for d in divisors(c):
rhs=rhs+C[0][Integer(a*b/d/d)]
return abs(rhs-lhs)
示例4: _coset_reduction_data_second_coord
def _coset_reduction_data_second_coord(G):
"""
Compute data used for determining the canonical coset
representative of an element of SL_2(Z) modulo G. This
function specifically returns data needed for the second part
of the reduction step (the second coordinate).
INPUT:
self
OUTPUT:
a dictionary v with keys the divisors of N such that v[d]
is the subgroup {h in H : h = 1 (mod N/d)}.
EXAMPLES::
sage: G = GammaH(240,[7,239])
sage: G._coset_reduction_data_second_coord()
{1: [1], 2: [1], 3: [1], 4: [1], 5: [1, 49], 6: [1], 48: [1, 191], 8: [1], 80: [1, 7, 49, 103], 10: [1, 49], 12: [1], 15: [1, 49], 240: [1, 7, 49, 103, 137, 191, 233, 239], 40: [1, 7, 49, 103], 20: [1, 49], 24: [1, 191], 120: [1, 7, 49, 103, 137, 191, 233, 239], 60: [1, 49, 137, 233], 30: [1, 49, 137, 233], 16: [1]}
sage: G = GammaH(1200,[-1,7]); G
Congruence Subgroup Gamma_H(1200) with H generated by [7, 1199]
sage: K = G._coset_reduction_data_second_coord().keys() ; K.sort()
sage: K == divisors(1200)
True
"""
H = G._list_of_elements_in_H()
N = G.level()
v = { 1: [1] , N: H }
for d in [x for x in divisors(N) if x > 1 and x < N ]:
N_over_d = N // d
v[d] = [x for x in H if x % N_over_d == 1]
return v
示例5: number_of_Gamma0_NFCusps
def number_of_Gamma0_NFCusps(N):
"""
Returns the total number of orbits of cusps under the action of the
congruence subgroup `\\Gamma_0(N)`.
INPUT:
- ``N`` -- a number field ideal.
OUTPUT:
ingeter -- the number of orbits of cusps under Gamma0(N)-action.
EXAMPLES::
sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(2, a+1)
sage: from sage.modular.cusps_nf import number_of_Gamma0_NFCusps
sage: number_of_Gamma0_NFCusps(N)
4
sage: L = Gamma0_NFCusps(N)
sage: len(L) == number_of_Gamma0_NFCusps(N)
True
"""
k = N.number_field()
# The number of Gamma0(N)-sub-orbits for each Gamma-orbit:
from sage.rings.arith import divisors
s = sum([len(list((d+N/d).invertible_residues_mod(k.unit_group().gens()))) \
for d in divisors(N)])
# There are h Gamma-orbits, with h class number of underlying number field.
return s*k.class_number()
示例6: AllCusps
def AllCusps(N):
r"""
Return a list of CuspFamily objects corresponding to the cusps of
`X_0(N)`.
INPUT:
- ``N`` - (integer): the level
EXAMPLES::
sage: AllCusps(18)
[(Inf), (c_{2}), (c_{3,1}), (c_{3,2}), (c_{6,1}), (c_{6,2}), (c_{9}), (0)]
"""
try:
N = ZZ(N)
assert N>0
except TypeError:
raise TypeError, "N must be an integer"
except AssertionError:
raise AssertionError, "N must be positive"
c = []
for d in divisors(N):
n = num_cusps_of_width(N, d)
if n == 1:
c.append(CuspFamily(N, d))
elif n > 1:
for i in xrange(n):
c.append(CuspFamily(N, d, label=str(i+1)))
return c
示例7: _b_power_k
def _b_power_k(self, k):
r"""
An expression involving moebius inversion in the powersum generators.
For a positive value of ``k``, this expression is
.. MATH::
\frac{1}{k} \sum_{d|k} \mu(d/k) p_d.
INPUT:
- ``k`` -- a positive integer
OUTPUT:
- an expression in the powersum basis of the symmetric functions
EXAMPLES::
sage: st = SymmetricFunctions(QQ).st()
sage: st._b_power_k(1)
p[1]
sage: st._b_power_k(2)
-1/2*p[1] + 1/2*p[2]
sage: st._b_power_k(6)
1/6*p[1] - 1/6*p[2] - 1/6*p[3] + 1/6*p[6]
"""
if k == 1:
return self._p([1])
if k > 0:
return ~k * self._p.sum(moebius(k/d)*self._p([d])
for d in divisors(k))
示例8: TD_find_product_decomposition
def TD_find_product_decomposition(k,n):
r"""
Attempts to find a factorization of `n` in order to build a `TD(k,n)`.
If Sage can build a `TD(k,n_1)` and a `TD(k,n_2)` such that `n=n_1\times
n_2` then a `TD(k,n)` can be built (from the function
:func:`transversal_design`). This method returns such a pair of integers if
it exists, and ``None`` otherwise.
INPUT:
- ``k,n`` (integers) -- see above.
.. SEEALSO::
:func:`TD_product` that actually build a product
EXAMPLES::
sage: from sage.combinat.designs.orthogonal_arrays import TD_find_product_decomposition
sage: TD_find_product_decomposition(6, 84)
(7, 12)
sage: TD1 = designs.transversal_design(6, 7)
sage: TD2 = designs.transversal_design(6, 12)
sage: from sage.combinat.designs.orthogonal_arrays import TD_product
sage: TD = TD_product(6, TD1, 7, TD2, 12)
"""
from sage.rings.arith import divisors
for n1 in divisors(n)[1:-1]: # we ignore 1 and n
n2 = n//n1
if transversal_design(k, n1, existence = True) and transversal_design(k, n2, existence = True):
return n1,n2
return None
示例9: AllCusps
def AllCusps(N):
r"""
Return a list of CuspFamily objects corresponding to the cusps of
`X_0(N)`.
INPUT:
- ``N`` - (integer): the level
EXAMPLES::
sage: AllCusps(18)
[(Inf), (c_{2}), (c_{3,1}), (c_{3,2}), (c_{6,1}), (c_{6,2}), (c_{9}), (0)]
sage: AllCusps(0)
Traceback (most recent call last):
...
ValueError: N must be positive
"""
N = ZZ(N)
if N <= 0:
raise ValueError("N must be positive")
c = []
for d in divisors(N):
n = num_cusps_of_width(N, d)
if n == 1:
c.append(CuspFamily(N, d))
elif n > 1:
for i in xrange(n):
c.append(CuspFamily(N, d, label=str(i+1)))
return c
示例10: _Weyl_law_consts
def _Weyl_law_consts(self):
r"""
Compute constants for the Weyl law on self._G
OUTPUT:
- tuple of real numbers
EXAMPLES::
sage: M=MaassWaveForms(MySubgroup(Gamma0(1)))
sage: M._Weyl_law_consts()
(0, 2/pi, (log(pi) - log(2) + 2)/pi, 0, -2)
"""
import mpmath
pi=mpmath.fp.pi
ix=Integer(self._G.index())
nc=Integer(len(self._G.cusps()))
if(self._G.is_congruence()):
lvl=Integer(self._G.level())
else:
lvl=0
n2=Integer(self._G.nu2())
n3=Integer(self._G.nu3())
c1=ix/Integer(12)
c2=Integer(2)*nc/pi
c3=nc*(Integer(2)-ln(Integer(2))+ln(pi))/pi
if(lvl<>0):
A=1
for q in divisors(lvl):
num_prim_dc=0
DG=DirichletGroup(q)
for chi in DG.list():
if(chi.is_primitive()):
num_prim_dc=num_prim_dc+1
for m in divisors(lvl):
if(lvl % (m*q) == 0 and m % q ==0 ):
fak=(q*lvl)/gcd(m,lvl/m)
A=A*Integer(fak)**num_prim_dc
c4=-ln(A)/pi
else:
c4=Integer(0)
# constant term
c5=-ix/144+n2/8+n3*2/9-nc/4-1
return (c1,c2,c3,c4,c5)
示例11: reduce_basis
def reduce_basis(self, long_etas):
r"""
Produce a more manageable basis via LLL-reduction.
INPUT:
- ``long_etas`` - a list of EtaGroupElement objects (which
should all be of the same level)
OUTPUT:
- a new list of EtaGroupElement objects having
hopefully smaller norm
ALGORITHM: We define the norm of an eta-product to be the
`L^2` norm of its divisor (as an element of the free
`\ZZ`-module with the cusps as basis and the
standard inner product). Applying LLL-reduction to this gives a
basis of hopefully more tractable elements. Of course we'd like to
use the `L^1` norm as this is just twice the degree, which
is a much more natural invariant, but `L^2` norm is easier
to work with!
EXAMPLES::
sage: EtaGroup(4).reduce_basis([ EtaProduct(4, {1:8,2:24,4:-32}), EtaProduct(4, {1:8, 4:-8})])
[Eta product of level 4 : (eta_1)^8 (eta_4)^-8,
Eta product of level 4 : (eta_1)^-8 (eta_2)^24 (eta_4)^-16]
"""
N = self.level()
cusps = AllCusps(N)
r = matrix(ZZ, [[et.order_at_cusp(c) for c in cusps] for et in long_etas])
V = FreeModule(ZZ, r.ncols())
A = V.submodule_with_basis([V(rw) for rw in r.rows()])
rred = r.LLL()
short_etas = []
for shortvect in rred.rows():
bv = A.coordinates(shortvect)
dict = {}
for d in divisors(N):
dict[d] = sum( [bv[i]*long_etas[i].r(d) for i in xrange(r.nrows())])
short_etas.append(self(dict))
return short_etas
示例12: p1NFlist
def p1NFlist(N):
"""
Returns a list of the normalized elements of `\\mathbb{P}^1(R/N)`, where
`N` is an integral ideal.
INPUT:
- ``N`` - integral ideal (the level or modulus).
EXAMPLES::
sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3)
sage: from sage.modular.modsym.p1list_nf import p1NFlist, psi
sage: len(p1NFlist(N))==psi(N)
True
"""
k = N.number_field()
L = [MSymbol(N, k(0),k(1), check=False)]
#N.residues() = iterator through the residues mod N
L = L+[MSymbol(N, k(1), r, check=False) for r in N.residues()]
from sage.rings.arith import divisors
for D in divisors(N):
if not D.is_trivial() and D!=N:
#we find Dp ideal coprime to N, in inverse class to D
if D.is_principal():
Dp = k.ideal(1)
c = D.gens_reduced()[0]
else:
it = k.primes_of_degree_one_iter()
Dp = it.next()
while not Dp.is_coprime(N) or not (Dp*D).is_principal():
Dp = it.next()
c = (D*Dp).gens_reduced()[0]
#now we find all the (c,d)'s which have associated divisor D
I = D + N/D
for d in (N/D).residues():
if I.is_coprime(d):
M = D.prime_to_idealM_part(N/D)
u = (Dp*M).element_1_mod(N/D)
d1 = u*d + (1-u)
L.append(MSymbol(N, c, d1, check=False).normalize())
return L
示例13: cardinality
def cardinality(self):
r"""
Return the number of integer necklaces with the evaluation ``content``.
The formula for the number of necklaces of content `\alpha`
a composition of `n` is:
.. MATH::
\sum_{d|gcd(\alpha)} \phi(d)
\binom{n/d}{\alpha_1/d, \ldots, \alpha_\ell/d},
where `\phi(d)` is the Euler `\phi` function.
EXAMPLES::
sage: Necklaces([]).cardinality()
0
sage: Necklaces([2,2]).cardinality()
2
sage: Necklaces([2,3,2]).cardinality()
30
sage: Necklaces([0,3,2]).cardinality()
2
Check to make sure that the count matches up with the number of
necklace words generated.
::
sage: comps = [[],[2,2],[3,2,7],[4,2],[0,4,2],[2,0,4]]+Compositions(4).list()
sage: ns = [ Necklaces(comp) for comp in comps]
sage: all( [ n.cardinality() == len(n.list()) for n in ns] )
True
"""
evaluation = self._content
le = list(evaluation)
if not le:
return 0
n = sum(le)
return sum(euler_phi(j)*factorial(n/j) / prod(factorial(ni/j)
for ni in evaluation) for j in divisors(gcd(le))) / n
示例14: summand
def summand(part, n):
"""
Create the summand used in the Harrison count for a given partition.
Args:
part (tuple): A partition of `n` represented as a tuple.
n (int): The integer for which `part` is a partition.
Returns:
int: The summand corresponding to the partition `part` of `n`.
"""
t = 1
count = list(cycle_count(part, n)) + (factorial(n)-n)*[0]
for i in range(1,n+1):
for j in range(1,n+1):
s = sum([d*(count[d-1]) for d in divisors(lcm(i,j))])
t = t*(s**(count[i-1]*count[j-1]*gcd(i,j)))
t = t*factorial(n)/(prod(factorial(count[d-1])*(d**(count[d-1])) for d in range(1,n+1)))
return t
示例15: _find_cusps
def _find_cusps(self):
r"""
Return an ordered list of inequivalent cusps for self, i.e. a
set of representatives for the orbits of self on
`\mathbb{P}^1(\QQ)`. These are returned in a reduced
form; see self.reduce_cusp for the definition of reduced.
ALGORITHM:
Uses explicit formulae specific to `\Gamma_0(N)`: a reduced cusp on
`\Gamma_0(N)` is always of the form `a/d` where `d | N`, and `a_1/d
\sim a_2/d` if and only if `a_1 \cong a_2 \bmod {\rm gcd}(d,
N/d)`.
EXAMPLES::
sage: Gamma0(90)._find_cusps()
[0, 1/45, 1/30, 1/18, 1/15, 1/10, 1/9, 2/15, 1/6, 1/5, 1/3, 11/30, 1/2, 2/3, 5/6, Infinity]
sage: Gamma0(1).cusps()
[Infinity]
sage: Gamma0(180).cusps() == Gamma0(180).cusps(algorithm='modsym')
True
"""
N = self.level()
s = []
for d in arith.divisors(N):
w = arith.gcd(d, N//d)
if w == 1:
if d == 1:
s.append(Cusp(1,0))
elif d == N:
s.append(Cusp(0,1))
else:
s.append(Cusp(1,d))
else:
for a in xrange(1, w):
if arith.gcd(a, w) == 1:
while arith.gcd(a, d//w) != 1:
a += w
s.append(Cusp(a,d))
return sorted(s)