本文整理汇总了Python中sage.rings.all.IntegerModRing类的典型用法代码示例。如果您正苦于以下问题:Python IntegerModRing类的具体用法?Python IntegerModRing怎么用?Python IntegerModRing使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了IntegerModRing类的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: gamma_h_subgroups
def gamma_h_subgroups(self):
r"""
Return the subgroups of the form `\Gamma_H(N)` contained
in self, where `N` is the level of self.
EXAMPLES::
sage: G = Gamma0(11)
sage: G.gamma_h_subgroups()
[Congruence Subgroup Gamma0(11), Congruence Subgroup Gamma_H(11) with H generated by [4], Congruence Subgroup Gamma_H(11) with H generated by [10], Congruence Subgroup Gamma1(11)]
sage: G = Gamma0(12)
sage: G.gamma_h_subgroups()
[Congruence Subgroup Gamma0(12), Congruence Subgroup Gamma_H(12) with H generated by [7], Congruence Subgroup Gamma_H(12) with H generated by [11], Congruence Subgroup Gamma_H(12) with H generated by [5], Congruence Subgroup Gamma1(12)]
"""
from all import GammaH
N = self.level()
R = IntegerModRing(N)
return [GammaH(N, H) for H in R.multiplicative_subgroups()]
示例2: __init__
def __init__(self, N, q, D, poly=None, secret_dist='uniform', m=None):
"""
Construct a Ring-LWE oracle in dimension ``n=phi(N)`` over a ring of order
``q`` with noise distribution ``D``.
INPUT:
- ``N`` - index of cyclotomic polynomial (integer > 0, must be power of 2)
- ``q`` - modulus typically > N (integer > 0)
- ``D`` - an error distribution such as an instance of
:class:`DiscreteGaussianDistributionPolynomialSampler` or :class:`UniformSampler`
- ``poly`` - a polynomial of degree ``phi(N)``. If ``None`` the
cyclotomic polynomial used (default: ``None``).
- ``secret_dist`` - distribution of the secret. See documentation of
:class:`LWE` for details (default='uniform')
- ``m`` - number of allowed samples or ``None`` if no such limit exists
(default: ``None``)
EXAMPLES::
sage: from sage.crypto.lwe import RingLWE
sage: from sage.stats.distributions.discrete_gaussian_polynomial import DiscreteGaussianDistributionPolynomialSampler
sage: D = DiscreteGaussianDistributionPolynomialSampler(ZZ['x'], n=euler_phi(20), sigma=3.0)
sage: RingLWE(N=20, q=next_prime(800), D=D)
RingLWE(20, 809, Discrete Gaussian sampler for polynomials of degree < 8 with σ=3.000000 in each component, x^8 - x^6 + x^4 - x^2 + 1, 'uniform', None)
"""
self.N = ZZ(N)
self.n = euler_phi(N)
self.m = m
self.__i = 0
self.K = IntegerModRing(q)
if self.n != D.n:
raise ValueError("Noise distribution has dimensions %d != %d"%(D.n, self.n))
self.D = D
self.q = q
if poly is not None:
self.poly = poly
else:
self.poly = cyclotomic_polynomial(self.N, 'x')
self.R_q = self.K['x'].quotient(self.poly, 'x')
self.secret_dist = secret_dist
if secret_dist == 'uniform':
self.__s = self.R_q.random_element() # uniform sampling of secret
elif secret_dist == 'noise':
self.__s = self.D()
else:
raise TypeError("Parameter secret_dist=%s not understood."%(secret_dist))
示例3: RingLWE
class RingLWE(SageObject):
"""
Ring Learning with Errors oracle.
.. automethod:: __init__
.. automethod:: __call__
"""
def __init__(self, N, q, D, poly=None, secret_dist='uniform', m=None):
"""
Construct a Ring-LWE oracle in dimension ``n=phi(N)`` over a ring of order
``q`` with noise distribution ``D``.
INPUT:
- ``N`` - index of cyclotomic polynomial (integer > 0, must be power of 2)
- ``q`` - modulus typically > N (integer > 0)
- ``D`` - an error distribution such as an instance of
:class:`DiscreteGaussianDistributionPolynomialSampler` or :class:`UniformSampler`
- ``poly`` - a polynomial of degree ``phi(N)``. If ``None`` the
cyclotomic polynomial used (default: ``None``).
- ``secret_dist`` - distribution of the secret. See documentation of
:class:`LWE` for details (default='uniform')
- ``m`` - number of allowed samples or ``None`` if no such limit exists
(default: ``None``)
EXAMPLES::
sage: from sage.crypto.lwe import RingLWE
sage: from sage.stats.distributions.discrete_gaussian_polynomial import DiscreteGaussianDistributionPolynomialSampler
sage: D = DiscreteGaussianDistributionPolynomialSampler(ZZ['x'], n=euler_phi(20), sigma=3.0)
sage: RingLWE(N=20, q=next_prime(800), D=D)
RingLWE(20, 809, Discrete Gaussian sampler for polynomials of degree < 8 with σ=3.000000 in each component, x^8 - x^6 + x^4 - x^2 + 1, 'uniform', None)
"""
self.N = ZZ(N)
self.n = euler_phi(N)
self.m = m
self.__i = 0
self.K = IntegerModRing(q)
if self.n != D.n:
raise ValueError("Noise distribution has dimensions %d != %d"%(D.n, self.n))
self.D = D
self.q = q
if poly is not None:
self.poly = poly
else:
self.poly = cyclotomic_polynomial(self.N, 'x')
self.R_q = self.K['x'].quotient(self.poly, 'x')
self.secret_dist = secret_dist
if secret_dist == 'uniform':
self.__s = self.R_q.random_element() # uniform sampling of secret
elif secret_dist == 'noise':
self.__s = self.D()
else:
raise TypeError("Parameter secret_dist=%s not understood."%(secret_dist))
def _repr_(self):
"""
EXAMPLES::
sage: from sage.crypto.lwe import DiscreteGaussianDistributionPolynomialSampler, RingLWE
sage: D = DiscreteGaussianDistributionPolynomialSampler(ZZ['x'], n=8, sigma=3.0)
sage: RingLWE(N=16, q=next_prime(400), D=D)
RingLWE(16, 401, Discrete Gaussian sampler for polynomials of degree < 8 with σ=3.000000 in each component, x^8 + 1, 'uniform', None)
"""
if isinstance(self.secret_dist, str):
return "RingLWE(%d, %d, %s, %s, '%s', %s)"%(self.N, self.K.order(), self.D, self.poly, self.secret_dist, self.m)
else:
return "RingLWE(%d, %d, %s, %s, %s, %s)"%(self.N, self.K.order(), self.D, self.poly, self.secret_dist, self.m)
def __call__(self):
"""
EXAMPLES::
sage: from sage.crypto.lwe import DiscreteGaussianDistributionPolynomialSampler, RingLWE
sage: N = 16
sage: n = euler_phi(N)
sage: D = DiscreteGaussianDistributionPolynomialSampler(ZZ['x'], n, 5)
sage: ringlwe = RingLWE(N, 257, D, secret_dist='uniform')
sage: ringlwe()
((226, 198, 38, 222, 222, 127, 194, 124), (11, 191, 177, 59, 105, 203, 108, 42))
"""
if self.m is not None:
if self.__i >= self.m:
raise IndexError("Number of available samples exhausted.")
self.__i+=1
a = self.R_q.random_element()
return vector(a), vector(a * (self.__s) + self.D())
示例4: LWE
class LWE(SageObject):
"""
Learning with Errors (LWE) oracle.
.. automethod:: __init__
.. automethod:: __call__
"""
def __init__(self, n, q, D, secret_dist='uniform', m=None):
"""
Construct an LWE oracle in dimension ``n`` over a ring of order
``q`` with noise distribution ``D``.
INPUT:
- ``n`` - dimension (integer > 0)
- ``q`` - modulus typically > n (integer > 0)
- ``D`` - an error distribution such as an instance of
:class:`DiscreteGaussianSamplerRejection` or :class:`UniformSampler`
- ``secret_dist`` - distribution of the secret (default: 'uniform'); one of
- "uniform" - secret follows the uniform distribution in `\Zmod{q}`
- "noise" - secret follows the noise distribution
- ``(lb,ub)`` - the secret is chosen uniformly from ``[lb,...,ub]`` including both endpoints
- ``m`` - number of allowed samples or ``None`` if no such limit exists
(default: ``None``)
EXAMPLE:
First, we construct a noise distribution with standard deviation 3.0::
sage: from sage.crypto.lwe import DiscreteGaussianSampler
sage: D = DiscreteGaussianSampler(3.0)
Next, we construct our oracle::
sage: from sage.crypto.lwe import LWE
sage: lwe = LWE(n=20, q=next_prime(400), D=D); lwe
LWE(20, 401, DiscreteGaussianSamplerRejection(3.000000, 53, 4), 'uniform', None)
and sample 1000 samples::
sage: L = [lwe() for _ in range(1000)]
To test the oracle, we use the internal secret to evaluate the samples
in the secret::
sage: S = [ZZ(a.dot_product(lwe._LWE__s) - c) for (a,c) in L]
However, while Sage represents finite field elements between 0 and q-1
we rely on a balanced representation of those elements here. Hence, we
fix the representation and recover the correct standard deviation of the
noise::
sage: sqrt(variance([e if e <= 200 else e-401 for e in S]).n())
3.0...
If ``m`` is not ``None`` the number of available samples is restricted::
sage: from sage.crypto.lwe import LWE
sage: lwe = LWE(n=20, q=next_prime(400), D=D, m=30)
sage: _ = [lwe() for _ in range(30)]
sage: lwe() # 31
Traceback (most recent call last):
...
IndexError: Number of available samples exhausted.
"""
self.n = ZZ(n)
self.m = m
self.__i = 0
self.K = IntegerModRing(q)
self.FM = FreeModule(self.K, n)
self.D = D
self.secret_dist = secret_dist
if secret_dist == 'uniform':
self.__s = random_vector(self.K, self.n)
elif secret_dist == 'noise':
self.__s = vector(self.K, self.n, [self.D() for _ in range(n)])
else:
try:
lb, ub = map(ZZ,secret_dist)
self.__s = vector(self.K, self.n, [randint(lb,ub) for _ in range(n)])
except (IndexError, TypeError):
raise TypeError("Parameter secret_dist=%s not understood."%(secret_dist))
def _repr_(self):
"""
EXAMPLE::
sage: from sage.crypto.lwe import DiscreteGaussianSampler, LWE
sage: D = DiscreteGaussianSampler(3.0)
sage: lwe = LWE(n=20, q=next_prime(400), D=D); lwe
LWE(20, 401, DiscreteGaussianSamplerRejection(3.000000, 53, 4), 'uniform', None)
sage: lwe = LWE(n=20, q=next_prime(400), D=D, secret_dist=(-3, 3)); lwe
LWE(20, 401, DiscreteGaussianSamplerRejection(3.000000, 53, 4), (-3, 3), None)
"""
if isinstance(self.secret_dist, str):
return "LWE(%d, %d, %s, '%s', %s)"%(self.n,self.K.order(),self.D,self.secret_dist, self.m)
#.........这里部分代码省略.........