当前位置: 首页>>代码示例>>Python>>正文


Python Integer.binomial方法代码示例

本文整理汇总了Python中sage.rings.all.Integer.binomial方法的典型用法代码示例。如果您正苦于以下问题:Python Integer.binomial方法的具体用法?Python Integer.binomial怎么用?Python Integer.binomial使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.rings.all.Integer的用法示例。


在下文中一共展示了Integer.binomial方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: apply_T

# 需要导入模块: from sage.rings.all import Integer [as 别名]
# 或者: from sage.rings.all.Integer import binomial [as 别名]
    def apply_T(self, j):
        """
        Apply the matrix `T=[0,1,-1,-1]` to the `j`-th Manin symbol.

        INPUT:

        - ``j`` - (int) a symbol index

        OUTPUT: see documentation for apply()

        EXAMPLE::

            sage: from sage.modular.modsym.manin_symbol_list import ManinSymbolList_gamma0
            sage: m = ManinSymbolList_gamma0(5,8)
            sage: m.apply_T(4)
            [(3, 1), (9, -6), (15, 15), (21, -20), (27, 15), (33, -6), (39, 1)]
            sage: [m.apply_T(i) for i in xrange(10)]
            [[(5, 1), (11, -6), (17, 15), (23, -20), (29, 15), (35, -6), (41, 1)],
            [(0, 1), (6, -6), (12, 15), (18, -20), (24, 15), (30, -6), (36, 1)],
            [(4, 1), (10, -6), (16, 15), (22, -20), (28, 15), (34, -6), (40, 1)],
            [(2, 1), (8, -6), (14, 15), (20, -20), (26, 15), (32, -6), (38, 1)],
            [(3, 1), (9, -6), (15, 15), (21, -20), (27, 15), (33, -6), (39, 1)],
            [(1, 1), (7, -6), (13, 15), (19, -20), (25, 15), (31, -6), (37, 1)],
            [(5, 1), (11, -5), (17, 10), (23, -10), (29, 5), (35, -1)],
            [(0, 1), (6, -5), (12, 10), (18, -10), (24, 5), (30, -1)],
            [(4, 1), (10, -5), (16, 10), (22, -10), (28, 5), (34, -1)],
            [(2, 1), (8, -5), (14, 10), (20, -10), (26, 5), (32, -1)]]
        """
        k = self._weight
        i, u, v = self._symbol_list[j]
        u, v = self.__syms.normalize(v,-u-v)
        if (k-2) % 2 == 0:
            s = 1
        else:
            s = -1
        z = []
        a = Integer(k-2-i)
        for j in range(k-2-i+1):
            m = self.index((j, u, v))
            z.append((m, s * a.binomial(j)))
            s *= -1
        return z
开发者ID:drupel,项目名称:sage,代码行数:44,代码来源:manin_symbol_list.py

示例2: apply_TT

# 需要导入模块: from sage.rings.all import Integer [as 别名]
# 或者: from sage.rings.all.Integer import binomial [as 别名]
    def apply_TT(self, j):
        """
        Apply the matrix `TT=[-1,-1,0,1]` to the `j`-th Manin symbol.

        INPUT:

        - ``j`` - (int) a symbol index

        OUTPUT: see documentation for apply()

        EXAMPLE::

            sage: from sage.modular.modsym.manin_symbol_list import ManinSymbolList_gamma0
            sage: m = ManinSymbolList_gamma0(5,8)
            sage: m.apply_TT(4)
            [(38, 1)]
            sage: [m.apply_TT(i) for i in xrange(10)]
            [[(37, 1)],
            [(41, 1)],
            [(39, 1)],
            [(40, 1)],
            [(38, 1)],
            [(36, 1)],
            [(31, -1), (37, 1)],
            [(35, -1), (41, 1)],
            [(33, -1), (39, 1)],
            [(34, -1), (40, 1)]]
        """
        k = self._weight
        i, u, v = self._symbol_list[j]
        u, v = self.__syms.normalize(-u-v,u)
        if (k-2-i) % 2 == 0:
            s = 1
        else:
            s = -1
        z = []
        a = Integer(i)
        for j in range(i+1):
            m = self.index((k-2-i+j, u, v))
            z.append((m, s * a.binomial(j)))
            s *= -1
        return z
开发者ID:drupel,项目名称:sage,代码行数:44,代码来源:manin_symbol_list.py


注:本文中的sage.rings.all.Integer.binomial方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。