当前位置: 首页>>代码示例>>Python>>正文


Python line.line函数代码示例

本文整理汇总了Python中sage.plot.line.line函数的典型用法代码示例。如果您正苦于以下问题:Python line函数的具体用法?Python line怎么用?Python line使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了line函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot_cluster_fan_stereographically

    def plot_cluster_fan_stereographically(self, northsign=1, north=None, right=None, colors=None):
        from sage.plot.graphics import Graphics
        from sage.plot.point import point
        from sage.misc.flatten import flatten
        from sage.plot.line import line
        from sage.misc.functional import norm

        if self.rk !=3:
            raise ValueError("Can only stereographically project fans in 3d.")
        if not self.is_finite() and self._depth == infinity:
            raise ValueError("For infinite algebras you must specify the depth.")

        if north == None:
            if self.is_affine():
                north = vector(self.delta())
            else:
                north = vector( (-1,-1,-1) )
        if right == None:
            if self.is_affine():
                right = vector(self.gamma())
            else:
                right = vector( (1,0,0) )
        if colors == None:
            colors = dict([(0,'red'),(1,'green'),(2,'blue'),(3,'cyan'),(4,'yellow')])
        G = Graphics()

        roots = list(self.g_vectors())
        compatible = []
        while roots:
            x = roots.pop()
            for y in roots:
                if self.compatibility_degree(x,y) == 0:
                    compatible.append((x,y))
        for (u,v) in compatible:
            G += _stereo_arc(vector(u),vector(v),vector(u+v),north=northsign*north,right=right,thickness=0.5,color='black')

        for i in range(3):
            orbit = self.ith_orbit(i)
            for j in orbit:
                G += point(_stereo_coordinates(vector(orbit[j]),north=northsign*north,right=right),color=colors[i],zorder=len(G))

        if self.is_affine():
            tube_vectors = map(vector,flatten(self.affine_tubes()))
            for v in tube_vectors:
                G += point(_stereo_coordinates(v,north=northsign*north,right=right),color=colors[3],zorder=len(G))
            if north != vector(self.delta()):
                G += _stereo_arc(tube_vectors[0],tube_vectors[1],vector(self.delta()),north=northsign*north,right=right,thickness=2,color=colors[4],zorder=0)
            else:
                # FIXME: refactor this before publishing
                tube_projections = [
                        _stereo_coordinates(v,north=northsign*north,right=right)
                        for v in tube_vectors ]
                t=min((G.get_minmax_data()['xmax'],G.get_minmax_data()['ymax']))
                G += line([tube_projections[0],tube_projections[0]+t*(_normalize(tube_projections[0]-tube_projections[1]))],thickness=2,color=colors[4],zorder=0)
                G += line([tube_projections[1],tube_projections[1]+t*(_normalize(tube_projections[1]-tube_projections[0]))],thickness=2,color=colors[4],zorder=0)
        G.set_aspect_ratio(1)
        G._show_axes = False
        return G
开发者ID:Etn40ff,项目名称:cluster_seed_reborn,代码行数:58,代码来源:tropical_cluster_algebra_g.py

示例2: _arc

def _arc(p,q,s,**kwds):
    #rewrite this to use polar_plot and get points to do filled triangles
    from sage.misc.functional import det
    from sage.plot.line import line
    from sage.misc.functional import norm
    from sage.symbolic.all import pi
    from sage.plot.arc import arc
     
    p,q,s = map( lambda x: vector(x), [p,q,s])
     
    # to avoid running into division by 0 we set to be colinear vectors that are
    # almost colinear
    if abs(det(matrix([p-s,q-s])))<0.01:
        return line((p,q),**kwds)
     
    (cx,cy)=var('cx','cy')
    equations=[
            2*cx*(s[0]-p[0])+2*cy*(s[1]-p[1]) == s[0]**2+s[1]**2-p[0]**2-p[1]**2,
            2*cx*(s[0]-q[0])+2*cy*(s[1]-q[1]) == s[0]**2+s[1]**2-q[0]**2-q[1]**2
            ]
    c = vector( [solve( equations, (cx,cy), solution_dict=True )[0][i] for i in [cx,cy]] )
     
    r = norm(p-c)
     
    a_p,a_q,a_s = map( _to_angle, [p-c,q-c,s-c])
    angles = [a_p,a_q,a_s]
    angles.sort()
     
    if a_s == angles[0]:
        return arc( c, r, angle=angles[2], sector=(0,2*pi-angles[2]+angles[1]), **kwds)
    if a_s == angles[1]:
        return arc( c, r, angle=angles[0], sector=(0,angles[2]-angles[0]), **kwds)
    if a_s == angles[2]:
        return arc( c, r, angle=angles[1], sector=(0,2*pi-angles[1]+angles[0]), **kwds)
开发者ID:Etn40ff,项目名称:finite_type_cyclic_experiments,代码行数:34,代码来源:find_sortable_cones.py

示例3: plot_y

    def plot_y(self, plot_points=128, **kwds):
        r"""Plot the y-part of the path in the complex y-plane.

        Additional arguments and keywords are passed to
        ``matplotlib.pyplot.plot``.

        Parameters
        ----------
        N : int
            The number of interpolating points used to plot.
        t0 : double
            Starting t-value in [0,1].
        t1 : double
            Ending t-value in [0,1].

        Returns
        -------
        plt : Sage plot.
            A plot of the complex y-projection of the path.

        """
        s = numpy.linspace(0, 1, plot_points, dtype=double)
        vals = numpy.array([self.get_y(si)[0] for si in s], dtype=complex)
        pts = [(real_part(y), imag_part(y)) for y in vals]
        plt = line(pts, **kwds)
        return plt
开发者ID:collijk,项目名称:abelfunctions,代码行数:26,代码来源:riemann_surface_path.py

示例4: plot_n_matrices_eigenvectors

    def plot_n_matrices_eigenvectors(self, n, side='right', color_index=0, draw_line=False):
        r"""
        INPUT:

        - ``n`` -- integer, length
        - ``side`` -- ``'left'`` or ``'right'``, drawing left or right
          eigenvectors
        - ``color_index`` -- 0 for first letter, -1 for last letter
        - ``draw_line`` -- boolean

        EXAMPLES::

            sage: from slabbe.matrix_cocycle import cocycles
            sage: ARP = cocycles.ARP()
            sage: G = ARP.plot_n_matrices_eigenvectors(2)
        """
        from sage.plot.graphics import Graphics
        from sage.plot.point import point
        from sage.plot.line import line
        from sage.plot.text import text
        from sage.plot.colors import hue
        from sage.modules.free_module_element import vector
        from .matrices import M3to2
        R = self.n_matrices_eigenvectors(n)
        L = [(w, M3to2*(a/sum(a)), M3to2*(b/sum(b))) for (w,a,b) in R]
        G = Graphics()
        alphabet = self._language._alphabet
        color_ = dict( (letter, hue(i/float(len(alphabet)))) for i,letter in
                enumerate(alphabet))
        for letter in alphabet:
            L_filtered = [(w,p1,p2) for (w,p1,p2) in L if w[color_index] == letter]
            words,rights,lefts = zip(*L_filtered)
            if side == 'right':
                G += point(rights, color=color_[letter], legend_label=letter)
            elif side == 'left':
                G += point(lefts,  color=color_[letter], legend_label=letter)
            else:
                raise ValueError("side(=%s) should be left or right" % side)

        if draw_line:
            for (a,b) in L:
                G += line([a,b], color='black', linestyle=":")
        G += line([M3to2*vector(a) for a in [(1,0,0), (0,1,0), (0,0,1), (1,0,0)]]) 
        title = "%s eigenvectors, colored by letter w[%s] of cylinder w" % (side, color_index)
        G += text(title, (0.5, 1.05), axis_coords=True)
        G.axes(False)
        return G
开发者ID:seblabbe,项目名称:slabbe,代码行数:47,代码来源:matrix_cocycle.py

示例5: show

    def show(self, boundary=True, **options):
        r"""
        Plot ``self``.

        EXAMPLES::

            sage: HyperbolicPlane().UHP().get_geodesic(0, 1).show()
            Graphics object consisting of 2 graphics primitives
        """
        opts = {'axes': False, 'aspect_ratio': 1}
        opts.update(self.graphics_options())
        opts.update(options)
        end_1, end_2 = [CC(k.coordinates()) for k in self.endpoints()]
        bd_1, bd_2 = [CC(k.coordinates()) for k in self.ideal_endpoints()]
        if (abs(real(end_1) - real(end_2)) < EPSILON) \
                or CC(infinity) in [end_1, end_2]: #on same vertical line
            # If one of the endpoints is infinity, we replace it with a
            # large finite  point
            if end_1 == CC(infinity):
                end_1 = (real(end_2), (imag(end_2) + 10))
                end_2 = (real(end_2), imag(end_2))
            elif end_2 == CC(infinity):
                end_2 = (real(end_1), (imag(end_1) + 10))
                end_1 = (real(end_1), imag(end_1))
            from sage.plot.line import line
            pic = line((end_1, end_2), **opts)
            if boundary:
                cent = min(bd_1, bd_2)
                bd_dict = {'bd_min': cent - 3, 'bd_max': cent + 3}
                bd_pic = self._model.get_background_graphic(**bd_dict)
                pic = bd_pic + pic
                return pic
        else:
            center = (bd_1 + bd_2)/2 # Circle center
            radius = abs(bd_1 - bd_2)/2
            theta1 = CC(end_1 - center).arg()
            theta2 = CC(end_2 - center).arg()
            if abs(theta1 - theta2) < EPSILON:
                theta2 += pi
            [theta1, theta2] = sorted([theta1, theta2])
            from sage.calculus.var import var
            from sage.plot.plot import parametric_plot
            x = var('x')
            pic = parametric_plot((radius*cos(x) + real(center),
                                   radius*sin(x) + imag(center)),
                                  (x, theta1, theta2), **opts)
            if boundary:
                # We want to draw a segment of the real line.  The
                # computations below compute the projection of the
                # geodesic to the real line, and then draw a little
                # to the left and right of the projection.
                shadow_1, shadow_2 = [real(k) for k in [end_1, end_2]]
                midpoint = (shadow_1 + shadow_2)/2
                length = abs(shadow_1 - shadow_2)
                bd_dict = {'bd_min': midpoint - length, 'bd_max': midpoint +
                           length}
                bd_pic = self._model.get_background_graphic(**bd_dict)
                pic = bd_pic + pic
            return pic
开发者ID:rgbkrk,项目名称:sage,代码行数:59,代码来源:hyperbolic_geodesic.py

示例6: piecewise_linear_image

def piecewise_linear_image(A,B):
    # Jumps up and down going around circle, not used
    v = circle_drops(A,B)
    G = Graphics()
    w = [(Rational(i)/len(v), j) for i,j in enumerate(v)]
    for pt in w:
        G += line([(pt[0],pt[1]),(pt[0]+Rational(1)/len(w),pt[1])])
    return G
开发者ID:mrubinst,项目名称:lmfdb,代码行数:8,代码来源:plot.py

示例7: legend_3d

def legend_3d(hyperplane_arrangement, hyperplane_colors, length):
    r"""
    Create plot of a 3d legend for an arrangement of planes in 3-space.  The
    ``length`` parameter determines whether short or long labels are used in
    the legend.

    INPUT:

    - ``hyperplane_arrangement`` -- a hyperplane arrangement
    
    - ``hyperplane_colors`` -- list of colors

    - ``length`` -- either ``'short'`` or ``'long'``

    OUTPUT:

    - A graphics object.

    EXAMPLES::

        sage: a = hyperplane_arrangements.semiorder(3)
        sage: from sage.geometry.hyperplane_arrangement.plot import legend_3d
        sage: legend_3d(a, list(colors.values())[:6],length='long')
        Graphics object consisting of 6 graphics primitives

        sage: b = hyperplane_arrangements.semiorder(4)
        sage: c = b.essentialization()
        sage: legend_3d(c, list(colors.values())[:12], length='long')
        Graphics object consisting of 12 graphics primitives

        sage: legend_3d(c, list(colors.values())[:12], length='short')
        Graphics object consisting of 12 graphics primitives

        sage: p = legend_3d(c, list(colors.values())[:12], length='short')
        sage: p.set_legend_options(ncol=4)
        sage: type(p)
        <class 'sage.plot.graphics.Graphics'>
    """
    if hyperplane_arrangement.dimension() != 3:
        raise ValueError('arrangements must be in 3-space')
    hyps = hyperplane_arrangement.hyperplanes()
    N = len(hyperplane_arrangement)
    if length == 'short':
        labels = ['  ' + str(i) for i in range(N)]
    else:
        labels = ['  ' + hyps[i]._repr_linear(include_zero=False) for i in
                  range(N)]
    p = Graphics()
    for i in range(N):
        p += line([(0,0),(0,0)], color=hyperplane_colors[i], thickness=8,
                legend_label=labels[i], axes=False)
    p.set_legend_options(title='Hyperplanes', loc='center', labelspacing=0.4, 
            fancybox=True, font_size='x-large', ncol=2)
    p.legend(True)
    return p
开发者ID:saraedum,项目名称:sage-renamed,代码行数:55,代码来源:plot.py

示例8: plot

    def plot(self, **kwargs):
        """
        Plot this Newton polygon.

        .. NOTE::

            All usual rendering options (color, thickness, etc.) are available.

        EXAMPLES:

            sage: from sage.geometry.newton_polygon import NewtonPolygon
            sage: NP = NewtonPolygon([ (0,0), (1,1), (2,6) ])
            sage: polygon = NP.plot()
        """
        vertices = self.vertices()
        if len(vertices) == 0:
            from sage.plot.graphics import Graphics
            return Graphics()
        else:
            from sage.plot.line import line
            (xstart,ystart) = vertices[0]
            (xend,yend) = vertices[-1]
            if self.last_slope() is Infinity:
                return line([(xstart, ystart+1), (xstart,ystart+0.5)], linestyle="--", **kwargs) \
                     + line([(xstart, ystart+0.5)] + vertices + [(xend, yend+0.5)], **kwargs) \
                     + line([(xend, yend+0.5), (xend, yend+1)], linestyle="--", **kwargs)
            else:
                return line([(xstart, ystart+1), (xstart,ystart+0.5)], linestyle="--", **kwargs) \
                     + line([(xstart, ystart+0.5)] + vertices + [(xend+0.5, yend + 0.5*self.last_slope())], **kwargs) \
                     + line([(xend+0.5, yend + 0.5*self.last_slope()), (xend+1, yend+self.last_slope())], linestyle="--", **kwargs)
开发者ID:Findstat,项目名称:sage,代码行数:30,代码来源:newton_polygon.py

示例9: get_background_graphic

    def get_background_graphic(self, **bdry_options):
        r"""
        Return a graphic object that makes the model easier to visualize.
        For the upper half space, the background object is the ideal boundary.

        EXAMPLES::

            sage: hp = HyperbolicPlane().UHP().get_background_graphic()
        """
        from sage.plot.line import line
        bd_min = bdry_options.get('bd_min', -5)
        bd_max = bdry_options.get('bd_max', 5)
        return line(((bd_min, 0), (bd_max, 0)), color='black')
开发者ID:mcognetta,项目名称:sage,代码行数:13,代码来源:hyperbolic_model.py

示例10: show

    def show(self, boundary=True, **options):
        r"""
        Plot ``self``.

        EXAMPLES:

        First some lines::

            sage: PD = HyperbolicPlane().PD()
            sage: PD.get_geodesic(0, 1).show()
            Graphics object consisting of 2 graphics primitives
            sage: PD.get_geodesic(0, 0.3+0.8*I).show()
            Graphics object consisting of 2 graphics primitives

        Then some generic geodesics::

            sage: PD.get_geodesic(-0.5, 0.3+0.4*I).show()
            Graphics object consisting of 2 graphics primitives
            sage: PD.get_geodesic(-1, exp(3*I*pi/7)).show(linestyle="dashed", color="red")
            Graphics object consisting of 2 graphics primitives
            sage: PD.get_geodesic(exp(2*I*pi/11), exp(1*I*pi/11)).show(thickness=6, color="orange")
            Graphics object consisting of 2 graphics primitives
        """
        opts = {'axes': False, 'aspect_ratio': 1}
        opts.update(self.graphics_options())
        opts.update(options)
        end_1, end_2 = [CC(k.coordinates()) for k in self.endpoints()]
        bd_1, bd_2 = [CC(k.coordinates()) for k in self.ideal_endpoints()]
        # Check to see if it's a line
        if abs(bd_1 + bd_2) < EPSILON:
            pic = line([end_1, end_2], **opts)
        else:
            # If we are here, we know it's not a line
            # So we compute the center and radius of the circle
            invdet = RR.one() / (real(bd_1)*imag(bd_2) - real(bd_2)*imag(bd_1))
            centerx = (imag(bd_2) - imag(bd_1)) * invdet
            centery = (real(bd_1) - real(bd_2)) * invdet
            center = centerx + I * centery
            radius = RR(abs(bd_1 - center))
            # Now we calculate the angles for the arc
            theta1 = CC(end_1 - center).arg()
            theta2 = CC(end_2 - center).arg()
            theta1, theta2 = sorted([theta1, theta2])
            # Make sure the sector is inside the disk
            if theta2 - theta1 > pi:
                theta1 += 2 * pi
            pic = arc((centerx, centery), radius,
                      sector=(theta1, theta2), **opts)
        if boundary:
            pic += self._model.get_background_graphic()
        return pic
开发者ID:BlairArchibald,项目名称:sage,代码行数:51,代码来源:hyperbolic_geodesic.py

示例11: plot2d

    def plot2d(self,depth=None):
        # FIXME: refactor this before publishing
        from sage.plot.line import line
        from sage.plot.graphics import Graphics
        if self._n !=2:
            raise ValueError("Can only 2d plot fans.")
        if depth == None:
            depth = self._depth
        if not self.is_finite() and depth==infinity:
            raise ValueError("For infinite algebras you must specify the depth.")

        colors = dict([(0,'red'),(1,'green')])
        G = Graphics()
        for i in range(2):
            orbit = self.ith_orbit(i,depth=depth)
            for j in orbit:
                G += line([(0,0),vector(orbit[j])],color=colors[i],thickness=0.5, zorder=2*j+1)
    
        G.set_aspect_ratio(1)
        G._show_axes = False
        return G
开发者ID:Etn40ff,项目名称:level_zero,代码行数:21,代码来源:tropical_cluster_algebra.py

示例12: plot

    def plot(self, m, pointsize=100, thickness=3, axes=False):
        r"""
        Return 2d graphics object contained in the primal box [-m,m]^d.

        INPUT:

        - ``pointsize``, integer (default:``100``),
        - ``thickness``, integer (default:``3``),
        - ``axes``, bool (default:``False``),

        EXAMPLES::

            sage: from slabbe import BondPercolationSample
            sage: S = BondPercolationSample(0.5,2)
            sage: S.plot(2)           # optional long

        It works in 3d!!::

            sage: S = BondPercolationSample(0.5,3)
            sage: S.plot(3, pointsize=10, thickness=1)     # optional long
            Graphics3d Object

        """
        s = ""
        s += "\\begin{tikzpicture}\n"
        s += "[inner sep=0pt,thick,\n"
        s += "reddot/.style={fill=red,draw=red,circle,minimum size=5pt}]\n"
        s += "\\clip %s rectangle %s;\n" % ((-m-.4,-m-.4), (m+.4,m+.4))
        G = Graphics()
        for u in self.cluster_in_box(m+1):
            G += point(u, color='blue', size=pointsize)
        for (u,v) in self.edges_in_box(m+1):
            G += line((u,v), thickness=thickness, alpha=0.8)
        G += text("p=%.3f" % self._p, (0.5,1.03), axis_coords=True, color='black')
        G += circle((0,0), 0.5, color='red', thickness=thickness)
        if self._dimension == 2:
            G.axes(axes)
        return G
开发者ID:seblabbe,项目名称:slabbe,代码行数:38,代码来源:bond_percolation.py

示例13: list_plot

    def list_plot(cls, points, **kwargs):
        r"""
        Returns a sage figure containing a list plot.

        INPUT:

        - ``cls`` -- class on which the function is invoked.

        - ``points`` -- list or tuple of 2D or 3D points to be plotted.

        - ``joined`` -- boolean (default: False) flag triggering the production
          of a graph whose points are joined instead of a scatter plot.

        - ``alpha`` -- number (default: not used) opacity value of the points
          (or lines) in the produced graph.

        - ``size`` -- integer (default: not used) size of the points (or lines)
          in the produced graph.

        Other named arguments affecting the graphic style are forwarded to
        matplotlib's ``plot`` or ``scatter``.

        OUTPUT:

        figure containing a list plot.

        EXAMPLES:

        The following instructions generate and show a figure showing three
        points:

        ::

            >>> points = ((1, 1), (3, -1), (7, 2))
            >>> from yaplf.graph import SagePlotter
            >>> SagePlotter.list_plot(points)

        The same graph can be obtained joining the single points:

        ::

            >>> SagePlotter.list_plot(points, joined = True)

        When ``joined`` is set to ``True``, the ``size``, ``color``, and
        ``alpha`` arguments affect respectively the line size, color, and
        opacity:

        ::

            >>> SagePlotter.list_plot(points, joined = True, size = 3,
            ... alpha = .2)

        When the first argument of ``list_plot`` is a list or tuple of
        three-sized list or tuples, the result is a 3D graph:

        ::
            >>> points = ((1, 3, -4), (2, 1, 2), (1, 6, 5))
            >>> SagePlotter.list_plot(points)


        AUTHORS:

        - Dario Malchiodi (2010-02-22)

        """

        try:
            joined = kwargs['joined']
            del kwargs['joined']
        except KeyError:
            joined = False

        if len(shape(points)) == 1:
            points = zip(range(len(points)), points)

        if len(points[0]) == 2:
            try:
                size = kwargs['size']
                del kwargs['size']
                if joined:
                    kwargs['thickness'] = size
                else:
                    kwargs['pointsize'] = size
            except KeyError:
                pass
        elif len(points[0]) == 3:
            try:
                alpha = kwargs['alpha']
                del kwargs['alpha']
                kwargs['opacity'] = alpha
                if joined:
                    size = kwargs['size']
                    del kwargs['size']
                    kwargs['thickness'] = size
            except KeyError:
                pass
        else:
            raise ValueError('scatter() only available for 2D and 3D points')

        if joined:
#.........这里部分代码省略.........
开发者ID:dariomalchiodi,项目名称:yaplf,代码行数:101,代码来源:__init__.py

示例14: plot


#.........这里部分代码省略.........

            sage: S2 = Manifold(2, 'S^2')
            sage: U = S2.open_subset('U')
            sage: XS.<th,ph> = U.chart(r'th:(0,pi):\theta ph:(0,2*pi):\phi')
            sage: R3 = Manifold(3, 'R^3')
            sage: X3.<x,y,z> = R3.chart()
            sage: F = S2.diff_mapping(R3, {(XS, X3): [sin(th)*cos(ph),
            ....:                     sin(th)*sin(ph), cos(th)]}, name='F')
            sage: F.display()
            F: S^2 --> R^3
            on U: (th, ph) |--> (x, y, z) = (cos(ph)*sin(th), sin(ph)*sin(th), cos(th))
            sage: c = S2.curve([2*atan(exp(-t/10)), t], (t, -oo, +oo), name='c')
            sage: graph_c = c.plot(mapping=F, max_value=40,
            ....:                  plot_points=200, thickness=2, label_axes=False)  # 3D plot
            sage: graph_S2 = XS.plot(X3, mapping=F, nb_values=11, color='black') # plot of the sphere
            sage: show(graph_c + graph_S2) # the loxodrome + the sphere

        Example of use of the argument ``parameters``: we define a curve with
        some symbolic parameters ``a`` and ``b``::

            sage: a, b = var('a b')
            sage: c = R2.curve([a*cos(t) + b, a*sin(t)], (t, 0, 2*pi), name='c')

        To make a plot, we set spectific values for ``a`` and ``b`` by means
        of the Python dictionary ``parameters``::

            sage: c.plot(parameters={a: 2, b: -3}, aspect_ratio=1)
            Graphics object consisting of 1 graphics primitive

        """
        from sage.rings.infinity import Infinity
        from sage.misc.functional import numerical_approx
        from sage.plot.graphics import Graphics
        from sage.plot.line import line
        from sage.geometry.manifolds.chart import Chart
        from sage.geometry.manifolds.utilities import set_axes_labels
        #
        # The "effective" curve to be plotted
        #
        if mapping is None:
            eff_curve = self
        else:
            eff_curve = mapping.restrict(self.codomain()) * self
        #
        # The chart w.r.t. which the curve is plotted
        #
        if chart is None:
            chart = eff_curve._codomain.default_chart()
        elif not isinstance(chart, Chart):
            raise TypeError("{} is not a chart".format(chart))
        #
        # Coordinates of the above chart w.r.t. which the curve is plotted
        #
        if ambient_coords is None:
            ambient_coords = chart[:]  # all chart coordinates are used
        n_pc = len(ambient_coords)
        if n_pc != 2 and n_pc !=3:
            raise ValueError("The number of coordinates involved in the " +
                             "plot must be either 2 or 3, not {}".format(n_pc))
        ind_pc = [chart[:].index(pc) for pc in ambient_coords] # indices of plot
                                                            # coordinates
        #
        # Parameter range for the plot
        #
        if prange is None:
            prange = (self._domain.lower_bound(), self._domain.upper_bound())
开发者ID:gaby7646,项目名称:sage,代码行数:67,代码来源:curve.py

示例15: show

    def show(self, **args):
        r"""
        Displays the pseudoline arrangement as a wiring diagram.

        INPUT:

        - ``**args`` -- any arguments to be forwarded to the ``show`` method. In
          particular, to tune the dimensions, use the ``figsize`` argument
          (example below).

        EXAMPLES::

            sage: from sage.geometry.pseudolines import PseudolineArrangement
            sage: permutations = [[3, 2, 1], [3, 2, 0], [3, 1, 0], [2, 1, 0]]
            sage: p = PseudolineArrangement(permutations)
            sage: p.show(figsize=[7,5])

        TESTS::

            sage: from sage.geometry.pseudolines import PseudolineArrangement
            sage: permutations = [[3, 2, 1], [3, 2, 0], [3, 0, 1], [2, 0, 1]]
            sage: p = PseudolineArrangement(permutations)
            sage: p.show()
            Traceback (most recent call last):
            ...
            ValueError: There has been a problem while plotting the figure...
        """
        x = 1
        from sage.plot.line import line
        from sage.plot.text import text

        lines = [[(0,self._n-1-i)] for i in range(self._n)]

        for i,j in self.transpositions():
            iy = lines[i][-1][1]
            jy = lines[j][-1][1]

            lines[i].append((x, iy))
            lines[j].append((x, jy))

            if abs(iy-jy) != 1:
                raise ValueError(
                    "There has been a problem while plotting the figure. It "+
                    "seems that the lines are not correctly ordered. Please "+
                    "check the pseudolines modules documentation, there is a "
                    +"warning about that. ")

            lines[i].append((x+2,jy))
            lines[j].append((x+2,iy))

            x += 2

        L = line([(1,1)])

        for i, l in enumerate(lines):
            l.append((x+2, l[-1][1]))
            L += line(l)

            L += text(str(i), (0, l[0][1]+.3), horizontal_alignment="right")
            L += text(str(i), (x+2, l[-1][1]+.3), horizontal_alignment="left")

        return L.show(axes = False, **args)
开发者ID:sagemath,项目名称:sage,代码行数:62,代码来源:pseudolines.py


注:本文中的sage.plot.line.line函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。