本文整理汇总了Python中sage.plot.graphics.Graphics类的典型用法代码示例。如果您正苦于以下问题:Python Graphics类的具体用法?Python Graphics怎么用?Python Graphics使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Graphics类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_fan_stereographically
def plot_fan_stereographically(rays, walls, northsign=1, north=vector((-1,-1,-1)), right=vector((1,0,0)), colors=None, thickness=None):
from sage.plot.graphics import Graphics
from sage.plot.point import point
from sage.misc.flatten import flatten
from sage.plot.line import line
from sage.misc.functional import norm
if colors == None:
colors = dict([('walls','black'),('rays','red')])
if thickness == None:
thickness = dict([('walls',0.5),('rays',20)])
G = Graphics()
for (u,v) in walls:
G += _stereo_arc(vector(u),vector(v),vector(u+v),north=northsign*north,right=right,color=colors['walls'],thickness=thickness['walls'],zorder=len(G))
for v in rays:
G += point(_stereo_coordinates(vector(v),north=northsign*north,right=right),color=colors['rays'],zorder=len(G),size=thickness['rays'])
G.set_aspect_ratio(1)
G._show_axes = False
return G
示例2: legend_3d
def legend_3d(hyperplane_arrangement, hyperplane_colors, length):
r"""
Create plot of a 3d legend for an arrangement of planes in 3-space. The
``length`` parameter determines whether short or long labels are used in
the legend.
INPUT:
- ``hyperplane_arrangement`` -- a hyperplane arrangement
- ``hyperplane_colors`` -- list of colors
- ``length`` -- either ``'short'`` or ``'long'``
OUTPUT:
- A graphics object.
EXAMPLES::
sage: a = hyperplane_arrangements.semiorder(3)
sage: from sage.geometry.hyperplane_arrangement.plot import legend_3d
sage: legend_3d(a, list(colors.values())[:6],length='long')
Graphics object consisting of 6 graphics primitives
sage: b = hyperplane_arrangements.semiorder(4)
sage: c = b.essentialization()
sage: legend_3d(c, list(colors.values())[:12], length='long')
Graphics object consisting of 12 graphics primitives
sage: legend_3d(c, list(colors.values())[:12], length='short')
Graphics object consisting of 12 graphics primitives
sage: p = legend_3d(c, list(colors.values())[:12], length='short')
sage: p.set_legend_options(ncol=4)
sage: type(p)
<class 'sage.plot.graphics.Graphics'>
"""
if hyperplane_arrangement.dimension() != 3:
raise ValueError('arrangements must be in 3-space')
hyps = hyperplane_arrangement.hyperplanes()
N = len(hyperplane_arrangement)
if length == 'short':
labels = [' ' + str(i) for i in range(N)]
else:
labels = [' ' + hyps[i]._repr_linear(include_zero=False) for i in
range(N)]
p = Graphics()
for i in range(N):
p += line([(0,0),(0,0)], color=hyperplane_colors[i], thickness=8,
legend_label=labels[i], axes=False)
p.set_legend_options(title='Hyperplanes', loc='center', labelspacing=0.4,
fancybox=True, font_size='x-large', ncol=2)
p.legend(True)
return p
示例3: bezier_path
def bezier_path(self):
"""
Return ``self`` as a Bezier path.
This is needed to concatenate arcs, in order to
create hyperbolic polygons.
EXAMPLES::
sage: from sage.plot.arc import Arc
sage: op = {'alpha':1,'thickness':1,'rgbcolor':'blue','zorder':0,
....: 'linestyle':'--'}
sage: Arc(2,3,2.2,2.2,0,2,3,op).bezier_path()
Graphics object consisting of 1 graphics primitive
sage: a = arc((0,0),2,1,0,(pi/5,pi/2+pi/12), linestyle="--", color="red")
sage: b = a[0].bezier_path()
sage: b[0]
Bezier path from (1.133..., 0.8237...) to (-0.2655..., 0.9911...)
"""
from sage.plot.bezier_path import BezierPath
from sage.plot.graphics import Graphics
from matplotlib.path import Path
import numpy as np
ma = self._matplotlib_arc()
def theta_stretch(theta, scale):
theta = np.deg2rad(theta)
x = np.cos(theta)
y = np.sin(theta)
return np.rad2deg(np.arctan2(scale * y, x))
theta1 = theta_stretch(ma.theta1, ma.width / ma.height)
theta2 = theta_stretch(ma.theta2, ma.width / ma.height)
pa = ma
pa._path = Path.arc(theta1, theta2)
transform = pa.get_transform().get_matrix()
cA, cC, cE = transform[0]
cB, cD, cF = transform[1]
points = []
for u in pa._path.vertices:
x, y = list(u)
points += [(cA * x + cC * y + cE, cB * x + cD * y + cF)]
cutlist = [points[0: 4]]
N = 4
while N < len(points):
cutlist += [points[N: N + 3]]
N += 3
g = Graphics()
opt = self.options()
opt['fill'] = False
g.add_primitive(BezierPath(cutlist, opt))
return g
示例4: bar_chart
def bar_chart(datalist, **options):
"""
A bar chart of (currently) one list of numerical data.
Support for more data lists in progress.
EXAMPLES:
A bar_chart with blue bars::
sage: bar_chart([1,2,3,4])
Graphics object consisting of 1 graphics primitive
A bar_chart with thinner bars::
sage: bar_chart([x^2 for x in range(1,20)], width=0.2)
Graphics object consisting of 1 graphics primitive
A bar_chart with negative values and red bars::
sage: bar_chart([-3,5,-6,11], rgbcolor=(1,0,0))
Graphics object consisting of 1 graphics primitive
A bar chart with a legend (it's possible, not necessarily useful)::
sage: bar_chart([-1,1,-1,1], legend_label='wave')
Graphics object consisting of 1 graphics primitive
Extra options will get passed on to show(), as long as they are valid::
sage: bar_chart([-2,8,-7,3], rgbcolor=(1,0,0), axes=False)
Graphics object consisting of 1 graphics primitive
sage: bar_chart([-2,8,-7,3], rgbcolor=(1,0,0)).show(axes=False) # These are equivalent
"""
dl = len(datalist)
#if dl > 1:
# print "WARNING, currently only 1 data set allowed"
# datalist = datalist[0]
if dl == 3:
datalist = datalist+[0]
#bardata = []
#cnt = 1
#for pnts in datalist:
#ind = [i+cnt/dl for i in range(len(pnts))]
#bardata.append([ind, pnts, xrange, yrange])
#cnt += 1
g = Graphics()
g._set_extra_kwds(Graphics._extract_kwds_for_show(options))
#TODO: improve below for multiple data sets!
#cnt = 1
#for ind, pnts, xrange, yrange in bardata:
#options={'rgbcolor':hue(cnt/dl),'width':0.5/dl}
# g._bar_chart(ind, pnts, xrange, yrange, options=options)
# cnt += 1
#else:
ind = list(range(len(datalist)))
g.add_primitive(BarChart(ind, datalist, options=options))
if options['legend_label']:
g.legend(True)
return g
示例5: plot_n_matrices_eigenvectors
def plot_n_matrices_eigenvectors(self, n, side='right', color_index=0, draw_line=False):
r"""
INPUT:
- ``n`` -- integer, length
- ``side`` -- ``'left'`` or ``'right'``, drawing left or right
eigenvectors
- ``color_index`` -- 0 for first letter, -1 for last letter
- ``draw_line`` -- boolean
EXAMPLES::
sage: from slabbe.matrix_cocycle import cocycles
sage: ARP = cocycles.ARP()
sage: G = ARP.plot_n_matrices_eigenvectors(2)
"""
from sage.plot.graphics import Graphics
from sage.plot.point import point
from sage.plot.line import line
from sage.plot.text import text
from sage.plot.colors import hue
from sage.modules.free_module_element import vector
from .matrices import M3to2
R = self.n_matrices_eigenvectors(n)
L = [(w, M3to2*(a/sum(a)), M3to2*(b/sum(b))) for (w,a,b) in R]
G = Graphics()
alphabet = self._language._alphabet
color_ = dict( (letter, hue(i/float(len(alphabet)))) for i,letter in
enumerate(alphabet))
for letter in alphabet:
L_filtered = [(w,p1,p2) for (w,p1,p2) in L if w[color_index] == letter]
words,rights,lefts = zip(*L_filtered)
if side == 'right':
G += point(rights, color=color_[letter], legend_label=letter)
elif side == 'left':
G += point(lefts, color=color_[letter], legend_label=letter)
else:
raise ValueError("side(=%s) should be left or right" % side)
if draw_line:
for (a,b) in L:
G += line([a,b], color='black', linestyle=":")
G += line([M3to2*vector(a) for a in [(1,0,0), (0,1,0), (0,0,1), (1,0,0)]])
title = "%s eigenvectors, colored by letter w[%s] of cylinder w" % (side, color_index)
G += text(title, (0.5, 1.05), axis_coords=True)
G.axes(False)
return G
示例6: plot3d
def plot3d(self,depth=None):
# FIXME: refactor this before publishing
from sage.plot.graphics import Graphics
from sage.plot.point import point
from sage.misc.flatten import flatten
from sage.plot.plot3d.shapes2 import sphere
if self._n !=3:
raise ValueError("Can only 3d plot fans.")
if depth == None:
depth = self._depth
if not self.is_finite() and depth==infinity:
raise ValueError("For infinite algebras you must specify the depth.")
colors = dict([(0,'red'),(1,'green'),(2,'blue'),(3,'cyan')])
G = Graphics()
roots = self.d_vectors(depth=depth)
compatible = []
while roots:
x = roots.pop()
for y in roots:
if self.compatibility_degree(x,y) == 0:
compatible.append((x,y))
for (u,v) in compatible:
G += _arc3d((_normalize(vector(u)),_normalize(vector(v))),thickness=0.5,color='black')
for i in range(3):
orbit = self.ith_orbit(i,depth=depth)
for j in orbit:
G += point(_normalize(vector(orbit[j])),color=colors[i],size=10,zorder=len(G.all))
if self.is_affine():
tube_vectors=map(vector,flatten(self.affine_tubes()))
tube_vectors=map(_normalize,tube_vectors)
for v in tube_vectors:
G += point(v,color=colors[3],size=10,zorder=len(G.all))
G += _arc3d((tube_vectors[0],tube_vectors[1]),thickness=5,color='gray',zorder=0)
G += sphere((0,0,0),opacity=0.1,zorder=0)
G._extra_kwds['frame']=False
G._extra_kwds['aspect_ratio']=1
return G
示例7: plot2d
def plot2d(self,depth=None):
# FIXME: refactor this before publishing
from sage.plot.line import line
from sage.plot.graphics import Graphics
if self._n !=2:
raise ValueError("Can only 2d plot fans.")
if depth == None:
depth = self._depth
if not self.is_finite() and depth==infinity:
raise ValueError("For infinite algebras you must specify the depth.")
colors = dict([(0,'red'),(1,'green')])
G = Graphics()
for i in range(2):
orbit = self.ith_orbit(i,depth=depth)
for j in orbit:
G += line([(0,0),vector(orbit[j])],color=colors[i],thickness=0.5, zorder=2*j+1)
G.set_aspect_ratio(1)
G._show_axes = False
return G
示例8: bezier_path
def bezier_path(self):
"""
Return ``self`` as a Bezier path.
This is needed to concatenate arcs, in order to
create hyperbolic polygons.
EXAMPLES::
sage: from sage.plot.arc import Arc
sage: op = {'alpha':1,'thickness':1,'rgbcolor':'blue','zorder':0,
....: 'linestyle':'--'}
sage: Arc(2,3,2.2,2.2,0,2,3,op).bezier_path()
Graphics object consisting of 1 graphics primitive
sage: a = arc((0,0),2,1,0,(pi/5,pi/2+pi/12), linestyle="--", color="red")
sage: b = a[0].bezier_path()
sage: b[0]
Bezier path from (1.618..., 0.5877...) to (-0.5176..., 0.9659...)
"""
from sage.plot.bezier_path import BezierPath
from sage.plot.graphics import Graphics
ma = self._matplotlib_arc()
transform = ma.get_transform().get_matrix()
cA, cC, cE = transform[0]
cB, cD, cF = transform[1]
points = []
for u in ma._path.vertices:
x, y = list(u)
points += [(cA * x + cC * y + cE, cB * x + cD * y + cF)]
cutlist = [points[0: 4]]
N = 4
while N < len(points):
cutlist += [points[N: N + 3]]
N += 3
g = Graphics()
opt = self.options()
opt['fill'] = False
g.add_primitive(BezierPath(cutlist, opt))
return g
示例9: plot
def plot(self, m, pointsize=100, thickness=3, axes=False):
r"""
Return 2d graphics object contained in the primal box [-m,m]^d.
INPUT:
- ``pointsize``, integer (default:``100``),
- ``thickness``, integer (default:``3``),
- ``axes``, bool (default:``False``),
EXAMPLES::
sage: from slabbe import BondPercolationSample
sage: S = BondPercolationSample(0.5,2)
sage: S.plot(2) # optional long
It works in 3d!!::
sage: S = BondPercolationSample(0.5,3)
sage: S.plot(3, pointsize=10, thickness=1) # optional long
Graphics3d Object
"""
s = ""
s += "\\begin{tikzpicture}\n"
s += "[inner sep=0pt,thick,\n"
s += "reddot/.style={fill=red,draw=red,circle,minimum size=5pt}]\n"
s += "\\clip %s rectangle %s;\n" % ((-m-.4,-m-.4), (m+.4,m+.4))
G = Graphics()
for u in self.cluster_in_box(m+1):
G += point(u, color='blue', size=pointsize)
for (u,v) in self.edges_in_box(m+1):
G += line((u,v), thickness=thickness, alpha=0.8)
G += text("p=%.3f" % self._p, (0.5,1.03), axis_coords=True, color='black')
G += circle((0,0), 0.5, color='red', thickness=thickness)
if self._dimension == 2:
G.axes(axes)
return G
示例10: plot_cluster_fan_stereographically
def plot_cluster_fan_stereographically(self, northsign=1, north=None, right=None, colors=None):
from sage.plot.graphics import Graphics
from sage.plot.point import point
from sage.misc.flatten import flatten
from sage.plot.line import line
from sage.misc.functional import norm
if self.rk !=3:
raise ValueError("Can only stereographically project fans in 3d.")
if not self.is_finite() and self._depth == infinity:
raise ValueError("For infinite algebras you must specify the depth.")
if north == None:
if self.is_affine():
north = vector(self.delta())
else:
north = vector( (-1,-1,-1) )
if right == None:
if self.is_affine():
right = vector(self.gamma())
else:
right = vector( (1,0,0) )
if colors == None:
colors = dict([(0,'red'),(1,'green'),(2,'blue'),(3,'cyan'),(4,'yellow')])
G = Graphics()
roots = list(self.g_vectors())
compatible = []
while roots:
x = roots.pop()
for y in roots:
if self.compatibility_degree(x,y) == 0:
compatible.append((x,y))
for (u,v) in compatible:
G += _stereo_arc(vector(u),vector(v),vector(u+v),north=northsign*north,right=right,thickness=0.5,color='black')
for i in range(3):
orbit = self.ith_orbit(i)
for j in orbit:
G += point(_stereo_coordinates(vector(orbit[j]),north=northsign*north,right=right),color=colors[i],zorder=len(G))
if self.is_affine():
tube_vectors = map(vector,flatten(self.affine_tubes()))
for v in tube_vectors:
G += point(_stereo_coordinates(v,north=northsign*north,right=right),color=colors[3],zorder=len(G))
if north != vector(self.delta()):
G += _stereo_arc(tube_vectors[0],tube_vectors[1],vector(self.delta()),north=northsign*north,right=right,thickness=2,color=colors[4],zorder=0)
else:
# FIXME: refactor this before publishing
tube_projections = [
_stereo_coordinates(v,north=northsign*north,right=right)
for v in tube_vectors ]
t=min((G.get_minmax_data()['xmax'],G.get_minmax_data()['ymax']))
G += line([tube_projections[0],tube_projections[0]+t*(_normalize(tube_projections[0]-tube_projections[1]))],thickness=2,color=colors[4],zorder=0)
G += line([tube_projections[1],tube_projections[1]+t*(_normalize(tube_projections[1]-tube_projections[0]))],thickness=2,color=colors[4],zorder=0)
G.set_aspect_ratio(1)
G._show_axes = False
return G
示例11: finalize
def finalize(self, G):
r"""
Finalize a root system plot.
INPUT:
- ``G`` -- a root system plot or ``0``
This sets the aspect ratio to 1 and remove the axes. This
should be called by all the user-level plotting methods of
root systems. This will become mostly obsolete when
customization options won't be lost anymore upon addition of
graphics objects and there will be a proper empty object for
2D and 3D plots.
EXAMPLES::
sage: L = RootSystem(["B",2,1]).ambient_space()
sage: options = L.plot_parse_options()
sage: p = L.plot_roots(plot_options=options)
sage: p += L.plot_coroots(plot_options=options)
sage: p.axes()
True
sage: p = options.finalize(p)
sage: p.axes()
False
sage: p.aspect_ratio()
1.0
sage: options = L.plot_parse_options(affine=False)
sage: p = L.plot_roots(plot_options=options)
sage: p += point([[1,1,0]])
sage: p = options.finalize(p)
sage: p.aspect_ratio()
[1.0, 1.0, 1.0]
If the input is ``0``, this returns an empty graphics object::
sage: type(options.finalize(0))
<class 'sage.plot.plot3d.base.Graphics3dGroup'>
sage: options = L.plot_parse_options()
sage: type(options.finalize(0))
<class 'sage.plot.graphics.Graphics'>
sage: list(options.finalize(0))
[]
"""
from sage.plot.graphics import Graphics
if self.dimension == 2:
if G == 0:
G = Graphics()
G.set_aspect_ratio(1)
# TODO: make this customizable
G.axes(False)
elif self.dimension == 3:
if G == 0:
from sage.plot.plot3d.base import Graphics3dGroup
G = Graphics3dGroup()
G.aspect_ratio(1)
# TODO: Configuration axes
return G
示例12: plot
def plot(self, chart=None, ambient_coords=None, mapping=None,
chart_domain=None, fixed_coords=None, ranges=None, max_value=8,
nb_values=None, steps=None,scale=1, color='blue', parameters=None,
label_axes=True, **extra_options):
r"""
Plot the vector field in a Cartesian graph based on the coordinates
of some ambient chart.
The vector field is drawn in terms of two (2D graphics) or three
(3D graphics) coordinates of a given chart, called hereafter the
*ambient chart*.
The vector field's base points `p` (or their images `\Phi(p)` by some
differentiable mapping `\Phi`) must lie in the ambient chart's domain.
INPUT:
- ``chart`` -- (default: ``None``) the ambient chart (see above); if
``None``, the default chart of the vector field's domain is used
- ``ambient_coords`` -- (default: ``None``) tuple containing the 2 or 3
coordinates of the ambient chart in terms of which the plot is
performed; if ``None``, all the coordinates of the ambient chart are
considered
- ``mapping`` -- (default: ``None``) differentiable mapping `\Phi`
(instance of
:class:`~sage.geometry.manifolds.diffmapping.DiffMapping`)
providing the link between the vector field's domain and
the ambient chart ``chart``; if ``None``, the identity mapping is
assumed
- ``chart_domain`` -- (default: ``None``) chart on the vector
field's domain to define the points at which vector arrows are to be
plotted; if ``None``, the default chart of the vector field's domain
is used
- ``fixed_coords`` -- (default: ``None``) dictionary with keys the
coordinates of ``chart_domain`` that are kept fixed and with values
the value of these coordinates; if ``None``, all the coordinates of
``chart_domain`` are used
- ``ranges`` -- (default: ``None``) dictionary with keys the
coordinates of ``chart_domain`` to be used and values
tuples ``(x_min,x_max)`` specifying the
coordinate range for the plot; if ``None``, the entire coordinate
range declared during the construction of ``chart_domain`` is
considered (with ``-Infinity`` replaced by ``-max_value`` and
``+Infinity`` by ``max_value``)
- ``max_value`` -- (default: 8) numerical value substituted to
``+Infinity`` if the latter is the upper bound of the range of a
coordinate for which the plot is performed over the entire coordinate
range (i.e. for which no specific plot range has been set in
``ranges``); similarly ``-max_value`` is the numerical valued
substituted for ``-Infinity``
- ``nb_values`` -- (default: ``None``) either an integer or a dictionary
with keys the coordinates of ``chart_domain`` to be used and values
the number of values of the coordinate for sampling
the part of the vector field's domain involved in the plot ; if
``nb_values`` is a single integer, it represents the number of
values for all coordinates; if ``nb_values`` is ``None``, it is set
to 9 for a 2D plot and to 5 for a 3D plot
- ``steps`` -- (default: ``None``) dictionary with keys the coordinates
of ``chart_domain`` to be used and values the step between each
constant value of the coordinate; if ``None``, the step is computed
from the coordinate range (specified in ``ranges``) and ``nb_values``.
On the contrary, if the step is provided for some coordinate, the
corresponding number of values is deduced from it and the coordinate
range.
- ``scale`` -- (default: 1) value by which the lengths of the arrows
representing the vectors is multiplied
- ``color`` -- (default: 'blue') color of the arrows representing the
vectors
- ``parameters`` -- (default: ``None``) dictionary giving the numerical
values of the parameters that may appear in the coordinate expression
of the vector field (see example below)
- ``label_axes`` -- (default: ``True``) boolean determining whether the
labels of the coordinate axes of ``chart`` shall be added to the
graph; can be set to ``False`` if the graph is 3D and must be
superposed with another graph.
- ``**extra_options`` -- extra options for the arrow plot, like
``linestyle``, ``width`` or ``arrowsize`` (see
:func:`~sage.plot.arrow.arrow2d` and
:func:`~sage.plot.plot3d.shapes.arrow3d` for details)
OUTPUT:
- a graphic object, either an instance of
:class:`~sage.plot.graphics.Graphics` for a 2D plot (i.e. based on
2 coordinates of ``chart``) or an instance of
:class:`~sage.plot.plot3d.base.Graphics3d` for a 3D plot (i.e.
based on 3 coordinates of ``chart``)
EXAMPLES:
Plot of a vector field on a 2-dimensional manifold::
sage: Manifold._clear_cache_() # for doctests only
sage: M = Manifold(2, 'M')
sage: X.<x,y> = M.chart()
sage: v = M.vector_field(name='v')
sage: v[:] = -y, x ; v.display()
v = -y d/dx + x d/dy
sage: v.plot()
Graphics object consisting of 80 graphics primitives
#.........这里部分代码省略.........
示例13: _graphics
def _graphics(self, plot_curve, ambient_coords, thickness=1,
aspect_ratio='automatic', color='red', style='-',
label_axes=True):
r"""
Plot a 2D or 3D curve in a Cartesian graph with axes labeled by
the ambient coordinates; it is invoked by the methods
:meth:`plot` of
:class:`~sage.manifolds.differentiable.curve.DifferentiableCurve`,
and its subclasses
(:class:`~sage.manifolds.differentiable.integrated_curve.IntegratedCurve`,
:class:`~sage.manifolds.differentiable.integrated_curve.IntegratedAutoparallelCurve`,
and
:class:`~sage.manifolds.differentiable.integrated_curve.IntegratedGeodesic`).
TESTS::
sage: M = Manifold(2, 'R^2')
sage: X.<x,y> = M.chart()
sage: R.<t> = RealLine()
sage: c = M.curve([cos(t), sin(t)], (t, 0, 2*pi), name='c')
sage: graph = c._graphics([[1,2], [3,4]], [x,y])
sage: graph._objects[0].xdata == [1,3]
True
sage: graph._objects[0].ydata == [2,4]
True
sage: graph._objects[0]._options['thickness'] == 1
True
sage: graph._extra_kwds['aspect_ratio'] == 'automatic'
True
sage: graph._objects[0]._options['rgbcolor'] == 'red'
True
sage: graph._objects[0]._options['linestyle'] == '-'
True
sage: l = [r'$'+latex(x)+r'$', r'$'+latex(y)+r'$']
sage: graph._extra_kwds['axes_labels'] == l
True
"""
from sage.plot.graphics import Graphics
from sage.plot.line import line
from sage.manifolds.utilities import set_axes_labels
#
# The plot
#
n_pc = len(ambient_coords)
resu = Graphics()
resu += line(plot_curve, color=color, linestyle=style,
thickness=thickness)
if n_pc == 2: # 2D graphic
resu.set_aspect_ratio(aspect_ratio)
if label_axes:
# We update the dictionary _extra_kwds (options to be passed
# to show()), instead of using the method
# Graphics.axes_labels() since the latter is not robust w.r.t.
# graph addition
resu._extra_kwds['axes_labels'] = [r'$'+latex(pc)+r'$'
for pc in ambient_coords]
else: # 3D graphic
if aspect_ratio == 'automatic':
aspect_ratio = 1
resu.aspect_ratio(aspect_ratio)
if label_axes:
labels = [str(pc) for pc in ambient_coords]
resu = set_axes_labels(resu, *labels)
return resu
示例14: plot
def plot(hyperplane_arrangement, **kwds):
r"""
Return a plot of the hyperplane arrangement.
If the arrangement is in 4 dimensions but inessential, a plot of
the essentialization is returned.
.. NOTE::
This function is available as the
:meth:`~sage.geometry.hyperplane_arrangement.arrangement.HyperplaneArrangementElement.plot`
method of hyperplane arrangements. You should not call this
function directly, only through the method.
INPUT:
- ``hyperplane_arrangement`` -- the hyperplane arrangement to plot
- ``**kwds`` -- plot options: see
:mod:`sage.geometry.hyperplane_arrangement.plot`.
OUTPUT:
A graphics object of the plot.
EXAMPLES::
sage: B = hyperplane_arrangements.semiorder(4)
sage: B.plot()
Displaying the essentialization.
Graphics3d Object
"""
N = len(hyperplane_arrangement)
dim = hyperplane_arrangement.dimension()
if hyperplane_arrangement.base_ring().characteristic() != 0:
raise NotImplementedError('must be a field of characteristic 0')
elif dim == 4:
if not hyperplane_arrangement.is_essential():
print('Displaying the essentialization.')
hyperplane_arrangement = hyperplane_arrangement.essentialization()
elif dim not in [1,2,3]: # revise to handle 4d
return # silently
# handle extra keywords
if 'hyperplane_colors' in kwds:
hyp_colors = kwds.pop('hyperplane_colors')
if not isinstance(hyp_colors, list): # we assume its a single color then
hyp_colors = [hyp_colors] * N
else:
HSV_tuples = [(i*1.0/N, 0.8, 0.9) for i in range(N)]
hyp_colors = [hsv_to_rgb(*x) for x in HSV_tuples]
if 'hyperplane_labels' in kwds:
hyp_labels = kwds.pop('hyperplane_labels')
has_hyp_label = True
if not isinstance(hyp_labels, list): # we assume its a boolean then
hyp_labels = [hyp_labels] * N
relabeled = []
for i in range(N):
if hyp_labels[i] in [True,'long']:
relabeled.append(True)
else:
relabeled.append(str(i))
hyp_labels = relabeled
else:
has_hyp_label = False
if 'label_colors' in kwds:
label_colors = kwds.pop('label_colors')
has_label_color = True
if not isinstance(label_colors, list): # we assume its a single color then
label_colors = [label_colors] * N
else:
has_label_color = False
if 'label_fontsize' in kwds:
label_fontsize = kwds.pop('label_fontsize')
has_label_fontsize = True
if not isinstance(label_fontsize, list): # we assume its a single size then
label_fontsize = [label_fontsize] * N
else:
has_label_fontsize = False
if 'label_offsets' in kwds:
has_offsets = True
offsets = kwds.pop('label_offsets')
else:
has_offsets = False # give default values below
hyperplane_legend = kwds.pop('hyperplane_legend', 'long' if dim < 3 else False)
if 'hyperplane_opacities' in kwds:
hyperplane_opacities = kwds.pop('hyperplane_opacities')
has_opacity = True
if not isinstance(hyperplane_opacities, list): # we assume a single number then
hyperplane_opacities = [hyperplane_opacities] * N
else:
has_opacity = False
point_sizes = kwds.pop('point_sizes', 50)
if not isinstance(point_sizes, list):
point_sizes = [point_sizes] * N
if 'ranges' in kwds:
ranges_set = True
ranges = kwds.pop('ranges')
if not type(ranges) in [list,tuple]: # ranges is a single number
ranges = [ranges] * N
# So ranges is some type of list.
#.........这里部分代码省略.........
示例15: plot
def plot(self, chart=None, ambient_coords=None, mapping=None,
chart_domain=None, fixed_coords=None, ranges=None,
number_values=None, steps=None,
parameters=None, label_axes=True, **extra_options):
r"""
Plot the vector field in a Cartesian graph based on the coordinates
of some ambient chart.
The vector field is drawn in terms of two (2D graphics) or three
(3D graphics) coordinates of a given chart, called hereafter the
*ambient chart*.
The vector field's base points `p` (or their images `\Phi(p)` by some
differentiable mapping `\Phi`) must lie in the ambient chart's domain.
INPUT:
- ``chart`` -- (default: ``None``) the ambient chart (see above); if
``None``, the default chart of the vector field's domain is used
- ``ambient_coords`` -- (default: ``None``) tuple containing the 2
or 3 coordinates of the ambient chart in terms of which the plot
is performed; if ``None``, all the coordinates of the ambient
chart are considered
- ``mapping`` -- :class:`~sage.manifolds.differentiable.diff_map.DiffMap`
(default: ``None``); differentiable map `\Phi` providing the link
between the vector field's domain and the ambient chart ``chart``;
if ``None``, the identity map is assumed
- ``chart_domain`` -- (default: ``None``) chart on the vector field's
domain to define the points at which vector arrows are to be plotted;
if ``None``, the default chart of the vector field's domain is used
- ``fixed_coords`` -- (default: ``None``) dictionary with keys the
coordinates of ``chart_domain`` that are kept fixed and with values
the value of these coordinates; if ``None``, all the coordinates of
``chart_domain`` are used
- ``ranges`` -- (default: ``None``) dictionary with keys the
coordinates of ``chart_domain`` to be used and values tuples
``(x_min, x_max)`` specifying the coordinate range for the plot;
if ``None``, the entire coordinate range declared during the
construction of ``chart_domain`` is considered (with ``-Infinity``
replaced by ``-max_range`` and ``+Infinity`` by ``max_range``)
- ``number_values`` -- (default: ``None``) either an integer or a
dictionary with keys the coordinates of ``chart_domain`` to be
used and values the number of values of the coordinate for sampling
the part of the vector field's domain involved in the plot ; if
``number_values`` is a single integer, it represents the number of
values for all coordinates; if ``number_values`` is ``None``, it is
set to 9 for a 2D plot and to 5 for a 3D plot
- ``steps`` -- (default: ``None``) dictionary with keys the
coordinates of ``chart_domain`` to be used and values the step
between each constant value of the coordinate; if ``None``, the
step is computed from the coordinate range (specified in ``ranges``)
and ``number_values``; on the contrary, if the step is provided
for some coordinate, the corresponding number of values is deduced
from it and the coordinate range
- ``parameters`` -- (default: ``None``) dictionary giving the numerical
values of the parameters that may appear in the coordinate expression
of the vector field (see example below)
- ``label_axes`` -- (default: ``True``) boolean determining whether
the labels of the coordinate axes of ``chart`` shall be added to
the graph; can be set to ``False`` if the graph is 3D and must be
superposed with another graph
- ``color`` -- (default: 'blue') color of the arrows representing
the vectors
- ``max_range`` -- (default: 8) numerical value substituted to
``+Infinity`` if the latter is the upper bound of the range of a
coordinate for which the plot is performed over the entire coordinate
range (i.e. for which no specific plot range has been set in
``ranges``); similarly ``-max_range`` is the numerical valued
substituted for ``-Infinity``
- ``scale`` -- (default: 1) value by which the lengths of the arrows
representing the vectors is multiplied
- ``**extra_options`` -- extra options for the arrow plot, like
``linestyle``, ``width`` or ``arrowsize`` (see
:func:`~sage.plot.arrow.arrow2d` and
:func:`~sage.plot.plot3d.shapes.arrow3d` for details)
OUTPUT:
- a graphic object, either an instance of
:class:`~sage.plot.graphics.Graphics` for a 2D plot (i.e. based on
2 coordinates of ``chart``) or an instance of
:class:`~sage.plot.plot3d.base.Graphics3d` for a 3D plot (i.e.
based on 3 coordinates of ``chart``)
EXAMPLES:
Plot of a vector field on a 2-dimensional manifold::
#.........这里部分代码省略.........