本文整理汇总了Python中sage.plot.all.text函数的典型用法代码示例。如果您正苦于以下问题:Python text函数的具体用法?Python text怎么用?Python text使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了text函数的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_labels
def plot_labels(self, labels, positions):
r"""
Plot ``labels`` at specified ``positions``.
INPUT:
- ``labels`` -- a string or a list of strings;
- ``positions`` -- a list of points.
OUTPUT:
- a plot.
EXAMPLES::
sage: from sage.geometry.toric_plotter import ToricPlotter
sage: tp = ToricPlotter(dict(), 2)
sage: tp.plot_labels("u", [(1.5,0)])
Graphics object consisting of 1 graphics primitive
"""
result = Graphics()
color = self.label_color
extra_options = self.extra_options
zorder = self.label_zorder
font_size = self.font_size
twod = self.dimension <= 2
labels = label_list(labels, len(positions), twod)
for label, position in zip(labels, positions):
if label is None:
continue
if twod:
result += text(label, position,
color=color, fontsize=font_size,
zorder=zorder, **extra_options)
else:
result += text3d(label, position, color=color, **extra_options)
return result
示例2: plot_histogram
def plot_histogram(self, clr=(0,0,1),eps = 0.4):
"""
Plots the histogram plot of the sequence, which is assumed to be real
or from a finite field, with a real indexing set I coercible into RR.
Options are clr, which is an RGB value, and eps, which is the spacing between the
bars.
EXAMPLES:
sage: J = range(3)
sage: A = [ZZ(i^2)+1 for i in J]
sage: s = IndexedSequence(A,J)
sage: P = s.plot_histogram()
Now type show(P) to view this in a browser.
"""
#from sage.plot.misc import text
F = self.base_ring() ## elements must be coercible into RR
I = self.index_object()
N = len(I)
S = self.list()
P = [polygon([[RR(I[i])-eps,0],[RR(I[i])-eps,RR(S[i])],[RR(I[i])+eps,RR(S[i])],[RR(I[i])+eps,0],[RR(I[i]),0]], rgbcolor=clr) for i in range(N)]
T = [text(str(I[i]),(RR(I[i]),-0.8),fontsize=15,rgbcolor=(1,0,0)) for i in range(N)]
return sum(P)+sum(T)
示例3: geomrep
def geomrep(M1, B1=None, lineorders1=None, pd=None, sp=False):
"""
Return a sage graphics object containing geometric representation of
matroid M1.
INPUT:
- ``M1`` -- A matroid.
- ``B1`` -- (optional) A list of elements in ``M1.groundset()`` that
correspond to a basis of ``M1`` and will be placed as vertices of the
triangle in the geometric representation of ``M1``.
- ``lineorders1`` -- (optional) A list of ordered lists of elements of
``M1.grondset()`` such that if a line in geometric representation is
setwise same as any of these then points contained will be traversed in
that order thus overriding internal order deciding heuristic.
- ``pd`` - (optional) A dictionary mapping ground set elements to their
(x,y) positions.
- ``sp`` -- (optional) If True, a positioning dictionary and line orders
will be placed in ``M._cached_info``.
OUTPUT:
A sage graphics object of type <class 'sage.plot.graphics.Graphics'> that
corresponds to the geometric representation of the matroid.
EXAMPLES::
sage: from sage.matroids import matroids_plot_helpers
sage: M=matroids.named_matroids.P7()
sage: G=matroids_plot_helpers.geomrep(M)
sage: G.show(xmin=-2, xmax=3, ymin=-2, ymax=3)
sage: M=matroids.named_matroids.P7()
sage: G=matroids_plot_helpers.geomrep(M,lineorders1=[['f','e','d']])
sage: G.show(xmin=-2, xmax=3, ymin=-2, ymax=3)
.. NOTE::
This method does NOT do any checks.
"""
G = Graphics()
# create lists of loops and parallel elements and simplify given matroid
[M, L, P] = slp(M1, pos_dict=pd, B=B1)
if B1 is None:
B1 = list(M.basis())
M._cached_info = M1._cached_info
if M.rank() == 0:
limits = None
loops = L
looptext = ", ".join([str(l) for l in loops])
rectx = -1
recty = -1
rectw = 0.5 + 0.4*len(loops) + 0.5 # controlled based on len(loops)
recth = 0.6
G += polygon2d([[rectx, recty], [rectx, recty+recth],
[rectx+rectw, recty+recth], [rectx+rectw, recty]],
color='black', fill=False, thickness=4)
G += text(looptext, (rectx+0.5, recty+0.3), color='black',
fontsize=13)
G += point((rectx+0.2, recty+0.3), color=Color('#BDBDBD'), size=300,
zorder=2)
G += text('Loop(s)', (rectx+0.5+0.4*len(loops)+0.1, recty+0.3),
fontsize=13, color='black')
limits = tracklims(limits, [rectx, rectx+rectw], [recty, recty+recth])
G.axes(False)
G.axes_range(xmin=limits[0]-0.5, xmax=limits[1]+0.5,
ymin=limits[2]-0.5, ymax=limits[3]+0.5)
return G
elif M.rank() == 1:
if M._cached_info is not None and \
'plot_positions' in M._cached_info.keys() and \
M._cached_info['plot_positions'] is not None:
pts = M._cached_info['plot_positions']
else:
pts = {}
gnd = sorted(M.groundset())
pts[gnd[0]] = (1, float(2)/3)
G += point((1, float(2)/3), size=300, color=Color('#BDBDBD'), zorder=2)
pt = [1, float(2)/3]
if len(P) == 0:
G += text(gnd[0], (float(pt[0]), float(pt[1])), color='black',
fontsize=13)
pts2 = pts
# track limits [xmin,xmax,ymin,ymax]
pl = [list(x) for x in pts2.values()]
lims = tracklims([None, None, None, None], [pt[0] for pt in pl],
[pt[1] for pt in pl])
elif M.rank() == 2:
nB1 = list(set(list(M.groundset())) - set(B1))
bline = []
for j in nB1:
if M.is_dependent([j, B1[0], B1[1]]):
bline.append(j)
interval = len(bline)+1
if M._cached_info is not None and \
'plot_positions' in M._cached_info.keys() and \
M._cached_info['plot_positions'] is not None:
pts2 = M._cached_info['plot_positions']
else:
pts2 = {}
#.........这里部分代码省略.........
示例4: addlp
def addlp(M, M1, L, P, ptsdict, G=None, limits=None):
"""
Return a graphics object containing loops (in inset) and parallel elements
of matroid.
INPUT:
- ``M`` -- A matroid.
- ``M1`` -- A simple matroid corresponding to ``M``.
- ``L`` -- List of elements in ``M.groundset()`` that are loops of matroid
``M``.
- ``P`` -- List of elements in ``M.groundset()`` not in
``M.simplify.groundset()`` or ``L``.
- ``ptsdict`` -- A dictionary containing elements in ``M.groundset()`` not
necessarily containing elements of ``L``.
- ``G`` -- (optional) A sage graphics object to which loops and parallel
elements of matroid `M` added .
- ``limits``-- (optional) Current axes limits [xmin,xmax,ymin,ymax].
OUTPUT:
A 2-tuple containing:
1. A sage graphics object containing loops and parallel elements of
matroid ``M``
2. axes limits array
EXAMPLES::
sage: from sage.matroids import matroids_plot_helpers
sage: M=Matroid(ring=GF(2), matrix=[[1, 0, 0, 0, 1, 1, 1,0,1],
....: [0, 1, 0, 1, 0, 1, 1,0,0],[0, 0, 1, 1, 1, 0, 1,0,0]])
sage: [M1,L,P]=matroids_plot_helpers.slp(M)
sage: G,lims=matroids_plot_helpers.addlp(M,M1,L,P,{0:(0,0)})
sage: G.show(axes=False)
.. NOTE::
This method does NOT do any checks.
"""
if G is None:
G = Graphics()
# deal with loops
if len(L) > 0:
loops = L
looptext = ", ".join([str(l) for l in loops])
if(limits is None):
rectx = -1
recty = -1
else:
rectx = limits[0]
recty = limits[2]-1
rectw = 0.5 + 0.4*len(loops) + 0.5 # controlled based on len(loops)
recth = 0.6
G += polygon2d([[rectx, recty], [rectx, recty+recth],
[rectx+rectw, recty+recth], [rectx+rectw, recty]],
color='black', fill=False, thickness=4)
G += text(looptext, (rectx+0.5, recty+0.3), color='black',
fontsize=13)
G += point((rectx+0.2, recty+0.3), color=Color('#BDBDBD'), size=300,
zorder=2)
G += text('Loop(s)', (rectx+0.5+0.4*len(loops)+0.1, recty+0.3),
fontsize=13, color='black')
limits = tracklims(limits, [rectx, rectx+rectw], [recty, recty+recth])
# deal with parallel elements
if len(P) > 0:
# create list of lists where inner lists are parallel classes
pcls = []
gnd = sorted(list(M1.groundset()))
for g in gnd:
pcl = [g]
for p in P:
if M.rank([g, p]) == 1:
pcl.extend([p])
pcls.append(pcl)
ext_gnd = list(M.groundset())
for pcl in pcls:
if len(pcl) > 1:
basept = list(ptsdict[pcl[0]])
if len(pcl) <= 2:
# add side by side
ptsdict[pcl[1]] = (basept[0], basept[1]-0.13)
G += points(zip([basept[0]], [basept[1]-0.13]),
color=Color('#BDBDBD'), size=300, zorder=2)
G += text(pcl[0], (float(basept[0]),
float(basept[1])), color='black',
fontsize=13)
G += text(pcl[1], (float(basept[0]),
float(basept[1])-0.13), color='black',
fontsize=13)
limits = tracklims(limits, [basept[0]], [basept[1]-0.13])
else:
# add in a bracket
pce = sorted([str(kk) for kk in pcl])
l = newlabel(set(ext_gnd))
ext_gnd.append(l)
G += text(l+'={ '+", ".join(pce)+' }', (float(basept[0]),
float(basept[1]-0.2)-0.034), color='black',
fontsize=13)
#.........这里部分代码省略.........
示例5: set_edges
def set_edges(self, **edge_options):
"""
Sets the edge (or arrow) plotting parameters for the GraphPlot object. This
function is called by the constructor but can also be called to make updates to
the vertex options of an existing GraphPlot object. Note that the changes are
cumulative.
EXAMPLES::
sage: g = Graph({}, loops=True, multiedges=True, sparse=True)
sage: g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),
... (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')])
sage: GP = g.graphplot(vertex_size=100, edge_labels=True, color_by_label=True, edge_style='dashed')
sage: GP.set_edges(edge_style='solid')
sage: GP.plot()
sage: GP.set_edges(edge_color='black')
sage: GP.plot()
sage: d = DiGraph({}, loops=True, multiedges=True, sparse=True)
sage: d.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),
... (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')])
sage: GP = d.graphplot(vertex_size=100, edge_labels=True, color_by_label=True, edge_style='dashed')
sage: GP.set_edges(edge_style='solid')
sage: GP.plot()
sage: GP.set_edges(edge_color='black')
sage: GP.plot()
TESTS::
sage: G = Graph("Fooba")
sage: G.show(edge_colors={'red':[(3,6),(2,5)]})
Verify that default edge labels are pretty close to being between the vertices
in some cases where they weren't due to truncating division (trac #10124)::
sage: test_graphs = graphs.FruchtGraph(), graphs.BullGraph()
sage: tol = 0.001
sage: for G in test_graphs:
... E=G.edges()
... for e0, e1, elab in E:
... G.set_edge_label(e0, e1, '%d %d' % (e0, e1))
... gp = G.graphplot(save_pos=True,edge_labels=True)
... vx = gp._plot_components['vertices'][0].xdata
... vy = gp._plot_components['vertices'][0].ydata
... for elab in gp._plot_components['edge_labels']:
... textobj = elab[0]
... x, y, s = textobj.x, textobj.y, textobj.string
... v0, v1 = map(int, s.split())
... vn = vector(((x-(vx[v0]+vx[v1])/2.),y-(vy[v0]+vy[v1])/2.)).norm()
... assert vn < tol
"""
for arg in edge_options:
self._options[arg] = edge_options[arg]
if 'edge_colors' in edge_options: self._options['color_by_label'] = False
# Handle base edge options: thickness, linestyle
eoptions={}
if 'edge_style' in self._options:
eoptions['linestyle'] = self._options['edge_style']
if 'thickness' in self._options:
eoptions['thickness'] = self._options['thickness']
# Set labels param to add labels on the fly
labels = False
if self._options['edge_labels']:
labels = True
self._plot_components['edge_labels'] = []
# Make dict collection of all edges (keep label and edge color)
edges_to_draw = {}
if self._options['color_by_label'] or isinstance(self._options['edge_colors'], dict):
if self._options['color_by_label']: edge_colors = self._graph._color_by_label()
else: edge_colors = self._options['edge_colors']
for color in edge_colors:
for edge in edge_colors[color]:
key = tuple(sorted([edge[0],edge[1]]))
if key == (edge[0],edge[1]): head = 1
else: head = 0
if len(edge) < 3:
label = self._graph.edge_label(edge[0],edge[1])
if isinstance(label, list):
if key in edges_to_draw:
edges_to_draw[key].append((label[-1], color, head))
else:
edges_to_draw[key] = [(label[-1], color, head)]
for i in range(len(label)-1):
edges_to_draw[key].append((label[-1], color, head))
else:
label = edge[2]
if key in edges_to_draw:
edges_to_draw[key].append((label, color, head))
else:
edges_to_draw[key] = [(label, color, head)]
# add unspecified edges in (default color black)
for edge in self._graph.edge_iterator():
key = tuple(sorted([edge[0],edge[1]]))
#.........这里部分代码省略.........
示例6: set_vertices
#.........这里部分代码省略.........
... (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')])
sage: GP = g.graphplot(vertex_size=100, edge_labels=True, color_by_label=True, edge_style='dashed')
sage: GP.set_vertices(talk=True)
sage: GP.plot()
sage: GP.set_vertices(vertex_colors='pink', vertex_shape='^')
sage: GP.plot()
"""
# Handle base vertex options
voptions = {}
for arg in vertex_options:
self._options[arg] = vertex_options[arg]
# First set defaults for styles
vertex_colors = None
if self._options['talk']:
voptions['markersize'] = 500
if self._options['partition'] is None:
vertex_colors = '#ffffff'
else:
voptions['markersize'] = self._options['vertex_size']
if 'vertex_colors' not in self._options or self._options['vertex_colors'] is None:
if self._options['partition'] is not None:
from sage.plot.colors import rainbow,rgbcolor
partition = self._options['partition']
l = len(partition)
R = rainbow(l)
vertex_colors = {}
for i in range(l):
vertex_colors[R[i]] = partition[i]
elif len(self._graph._boundary) != 0:
vertex_colors = {}
bdy_verts = []
int_verts = []
for v in self._graph.vertex_iterator():
if v in self._graph._boundary:
bdy_verts.append(v)
else:
int_verts.append(v)
vertex_colors['#fec7b8'] = int_verts
vertex_colors['#b3e8ff'] = bdy_verts
elif not vertex_colors:
vertex_colors='#fec7b8'
else:
vertex_colors = self._options['vertex_colors']
if 'vertex_shape' in self._options:
voptions['marker'] = self._options['vertex_shape']
if self._graph.is_directed():
self._vertex_radius = sqrt(voptions['markersize']/pi)
self._arrowshorten = 2*self._vertex_radius
if self._arcdigraph:
self._vertex_radius = sqrt(voptions['markersize']/(20500*pi))
voptions['zorder'] = 7
if not isinstance(vertex_colors, dict):
voptions['facecolor'] = vertex_colors
if self._arcdigraph:
self._plot_components['vertices'] = [circle(center,
self._vertex_radius, fill=True, facecolor=vertex_colors, clip=False)
for center in self._pos.values()]
else:
self._plot_components['vertices'] = scatter_plot(
self._pos.values(), clip=False, **voptions)
else:
# Color list must be ordered:
pos = []
colors = []
for i in vertex_colors:
pos += [self._pos[j] for j in vertex_colors[i]]
colors += [i]*len(vertex_colors[i])
# If all the vertices have not been assigned a color
if len(self._pos)!=len(pos):
from sage.plot.colors import rainbow,rgbcolor
vertex_colors_rgb=[rgbcolor(c) for c in vertex_colors]
for c in rainbow(len(vertex_colors)+1):
if rgbcolor(c) not in vertex_colors_rgb:
break
leftovers=[j for j in self._pos.values() if j not in pos]
pos+=leftovers
colors+=[c]*len(leftovers)
if self._arcdigraph:
self._plot_components['vertices'] = [circle(pos[i],
self._vertex_radius, fill=True, facecolor=colors[i], clip=False)
for i in range(len(pos))]
else:
self._plot_components['vertices'] = scatter_plot(pos,
facecolor=colors, clip=False, **voptions)
if self._options['vertex_labels']:
self._plot_components['vertex_labels'] = []
# TODO: allow text options
for v in self._nodelist:
self._plot_components['vertex_labels'].append(text(str(v),
self._pos[v], rgbcolor=(0,0,0), zorder=8))