本文整理汇总了Python中sage.modules.free_module.VectorSpace.subspaces方法的典型用法代码示例。如果您正苦于以下问题:Python VectorSpace.subspaces方法的具体用法?Python VectorSpace.subspaces怎么用?Python VectorSpace.subspaces使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sage.modules.free_module.VectorSpace
的用法示例。
在下文中一共展示了VectorSpace.subspaces方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: ProjectiveGeometryDesign
# 需要导入模块: from sage.modules.free_module import VectorSpace [as 别名]
# 或者: from sage.modules.free_module.VectorSpace import subspaces [as 别名]
def ProjectiveGeometryDesign(n, d, F, algorithm=None):
"""
Returns a projective geometry design.
A projective geometry design of parameters `n,d,F` has for points the lines
of `F^{n+1}`, and for blocks the `d+1`-dimensional subspaces of `F^{n+1}`,
each of which contains `\\frac {|F|^{d+1}-1} {|F|-1}` lines.
INPUT:
- ``n`` is the projective dimension
- ``d`` is the dimension of the subspaces of `P = PPn(F)` which
make up the blocks.
- ``F`` is a finite field.
- ``algorithm`` -- set to ``None`` by default, which results in using Sage's
own implementation. In order to use GAP's implementation instead (i.e. its
``PGPointFlatBlockDesign`` function) set ``algorithm="gap"``. Note that
GAP's "design" package must be available in this case, and that it can be
installed with the ``gap_packages`` spkg.
EXAMPLES:
The points of the following design are the `\\frac {2^{2+1}-1} {2-1}=7`
lines of `\mathbb{Z}_2^{2+1}`. It has `7` blocks, corresponding to each
2-dimensional subspace of `\mathbb{Z}_2^{2+1}`::
sage: designs.ProjectiveGeometryDesign(2, 1, GF(2))
Incidence structure with 7 points and 7 blocks
sage: BD = designs.ProjectiveGeometryDesign(2, 1, GF(2), algorithm="gap") # optional - gap_packages (design package)
sage: BD.is_block_design() # optional - gap_packages (design package)
(True, [2, 7, 3, 1])
"""
q = F.order()
from sage.interfaces.gap import gap, GapElement
from sage.sets.set import Set
if algorithm is None:
V = VectorSpace(F, n+1)
points = list(V.subspaces(1))
flats = list(V.subspaces(d+1))
blcks = []
for p in points:
b = []
for i in range(len(flats)):
if p.is_subspace(flats[i]):
b.append(i)
blcks.append(b)
v = (q**(n+1)-1)/(q-1)
return BlockDesign(v, blcks, name="ProjectiveGeometryDesign")
if algorithm == "gap": # Requires GAP's Design
gap.load_package("design")
gap.eval("D := PGPointFlatBlockDesign( %s, %s, %d )"%(n,q,d))
v = eval(gap.eval("D.v"))
gblcks = eval(gap.eval("D.blocks"))
gB = []
for b in gblcks:
gB.append([x-1 for x in b])
return BlockDesign(v, gB, name="ProjectiveGeometryDesign")
示例2: ProjectiveGeometryDesign
# 需要导入模块: from sage.modules.free_module import VectorSpace [as 别名]
# 或者: from sage.modules.free_module.VectorSpace import subspaces [as 别名]
def ProjectiveGeometryDesign(n, d, F, algorithm=None):
"""
INPUT:
- ``n`` is the projective dimension
- ``v`` is the number of points `PPn(GF(q))`
- ``d`` is the dimension of the subspaces of `P = PPn(GF(q))` which
make up the blocks
- ``b`` is the number of `d`-dimensional subspaces of `P`
Wraps GAP Design's PGPointFlatBlockDesign. Does *not* require
GAP's Design.
EXAMPLES::
sage: designs.ProjectiveGeometryDesign(2, 1, GF(2))
Incidence structure with 7 points and 7 blocks
sage: BD = designs.ProjectiveGeometryDesign(2, 1, GF(2), algorithm="gap") # optional - gap_packages (design package)
sage: BD.is_block_design() # optional - gap_packages (design package)
(True, [2, 7, 3, 1])
"""
q = F.order()
from sage.interfaces.gap import gap, GapElement
from sage.sets.set import Set
if algorithm == None:
V = VectorSpace(F, n+1)
points = list(V.subspaces(1))
flats = list(V.subspaces(d+1))
blcks = []
for p in points:
b = []
for i in range(len(flats)):
if p.is_subspace(flats[i]):
b.append(i)
blcks.append(b)
v = (q**(n+1)-1)/(q-1)
return BlockDesign(v, blcks, name="ProjectiveGeometryDesign")
if algorithm == "gap": # Requires GAP's Design
gap.load_package("design")
gap.eval("D := PGPointFlatBlockDesign( %s, %s, %d )"%(n,q,d))
v = eval(gap.eval("D.v"))
gblcks = eval(gap.eval("D.blocks"))
gB = []
for b in gblcks:
gB.append([x-1 for x in b])
return BlockDesign(v, gB, name="ProjectiveGeometryDesign")
示例3: mcfarland_1973_construction
# 需要导入模块: from sage.modules.free_module import VectorSpace [as 别名]
# 或者: from sage.modules.free_module.VectorSpace import subspaces [as 别名]
def mcfarland_1973_construction(q, s):
r"""
Return a difference set.
The difference set returned has the following parameters
.. MATH::
v = \frac{q^{s+1}(q^{s+1}+q-2)}{q-1},
k = \frac{q^s (q^{s+1}-1)}{q-1},
\lambda = \frac{q^s(q^s-1)}{q-1}
This construction is due to [McF1973]_.
INPUT:
- ``q``, ``s`` - (integers) parameters for the difference set (see the above
formulas for the expression of ``v``, ``k``, ``l`` in terms of ``q`` and
``s``)
.. SEEALSO::
The function :func:`are_mcfarland_1973_parameters` makes the translation
between the parameters `(q,s)` corresponding to a given triple
`(v,k,\lambda)`.
REFERENCES:
.. [McF1973] Robert L. McFarland
"A family of difference sets in non-cyclic groups"
Journal of Combinatorial Theory (A) vol 15 (1973).
http://dx.doi.org/10.1016/0097-3165(73)90031-9
EXAMPLES::
sage: from sage.combinat.designs.difference_family import (
....: mcfarland_1973_construction, is_difference_family)
sage: G,D = mcfarland_1973_construction(3, 1)
sage: assert is_difference_family(G, D, 45, 12, 3)
sage: G,D = mcfarland_1973_construction(2, 2)
sage: assert is_difference_family(G, D, 64, 28, 12)
"""
from sage.rings.finite_rings.finite_field_constructor import GF
from sage.modules.free_module import VectorSpace
from sage.rings.finite_rings.integer_mod_ring import Zmod
from sage.categories.cartesian_product import cartesian_product
from itertools import izip
r = (q**(s+1)-1) // (q-1)
F = GF(q,'a')
V = VectorSpace(F, s+1)
K = Zmod(r+1)
G = cartesian_product([F]*(s+1) + [K])
D = []
for k,H in izip(K, V.subspaces(s)):
for v in H:
D.append(G((tuple(v) + (k,))))
return G,[D]