当前位置: 首页>>代码示例>>Python>>正文


Python Cusp.denominator方法代码示例

本文整理汇总了Python中sage.modular.cusps.Cusp.denominator方法的典型用法代码示例。如果您正苦于以下问题:Python Cusp.denominator方法的具体用法?Python Cusp.denominator怎么用?Python Cusp.denominator使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.modular.cusps.Cusp的用法示例。


在下文中一共展示了Cusp.denominator方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: are_equivalent

# 需要导入模块: from sage.modular.cusps import Cusp [as 别名]
# 或者: from sage.modular.cusps.Cusp import denominator [as 别名]
    def are_equivalent(self, x, y, trans = False):
        r""" 
        Test whether or not cusps x and y are equivalent modulo self.  If self
        has a reduce_cusp() method, use that; otherwise do a slow explicit
        test. 

        If trans = False, returns True or False. If trans = True, then return
        either False or an element of self mapping x onto y.

        EXAMPLE::

            sage: Gamma0(7).are_equivalent(Cusp(1/3), Cusp(0), trans=True)
            [  3  -1]
            [-14   5]
            sage: Gamma0(7).are_equivalent(Cusp(1/3), Cusp(1/7))
            False
        """
        x = Cusp(x)
        y = Cusp(y)
        if not trans:
            try:
                xr = self.reduce_cusp(x)
                yr = self.reduce_cusp(y)
                if xr != yr:
                    return False
                if xr == yr:
                    return True
            except NotImplementedError:
                pass

        from all import SL2Z 
    
        vx = lift_to_sl2z(x.numerator(),x.denominator(), 0)
        dx = SL2Z([vx[2], -vx[0], vx[3], -vx[1]])
        vy = lift_to_sl2z(y.numerator(),y.denominator(), 0)
        dy = SL2Z([vy[2], -vy[0], vy[3], -vy[1]])
    
        for i in xrange(self.index()):
            # Note that the width of any cusp is bounded above by the index of self.
            # If self is congruence, then the level of self is a much better bound, but
            # this method is written to work with non-congruence subgroups as well,
            if dy * SL2Z([1,i,0,1])*(~dx) in self:
                if trans:
                    return dy * SL2Z([1,i,0,1]) * ~dx
                else:
                    return True
            elif (self.is_odd() and dy * SL2Z([-1,-i,0,-1]) * ~dx in self):
                if trans:
                    return dy * SL2Z([-1,-i,0,-1]) * ~dx
                else:
                    return True
        return False
开发者ID:jwbober,项目名称:sagelib,代码行数:54,代码来源:arithgroup_generic.py

示例2: reduce_cusp

# 需要导入模块: from sage.modular.cusps import Cusp [as 别名]
# 或者: from sage.modular.cusps.Cusp import denominator [as 别名]
    def reduce_cusp(self, c):
        r"""
        Calculate the unique reduced representative of the equivalence of the
        cusp `c` modulo this group. The reduced representative of an
        equivalence class is the unique cusp in the class of the form `u/v`
        with `u, v \ge 0` coprime, `v` minimal, and `u` minimal for that `v`.

        EXAMPLES::

            sage: Gamma(5).reduce_cusp(1/5)
            Infinity
            sage: Gamma(5).reduce_cusp(7/8)
            3/2
            sage: Gamma(6).reduce_cusp(4/3)
            2/3

        TESTS::

            sage: G = Gamma(50); all([c == G.reduce_cusp(c) for c in G.cusps()])
            True
        """
        N = self.level()
        c = Cusp(c)
        u,v = c.numerator() % N, c.denominator() % N
        if (v > N//2) or (2*v == N and u > N//2): 
            u,v = -u,-v
        u,v = _lift_pair(u,v,N)
        return Cusp(u,v)
开发者ID:bgxcpku,项目名称:sagelib,代码行数:30,代码来源:congroup_gamma.py

示例3: cusp_data

# 需要导入模块: from sage.modular.cusps import Cusp [as 别名]
# 或者: from sage.modular.cusps.Cusp import denominator [as 别名]
    def cusp_data(self, c):
        r"""
        Return a triple (g, w, t) where g is an element of self generating the
        stabiliser of the given cusp, w is the width of the cusp, and t is 1 if
        the cusp is regular and -1 if not.

        EXAMPLES::

            sage: Gamma1(4).cusp_data(Cusps(1/2))
            (
            [ 1 -1]
            [ 4 -3], 1, -1
            )
        """
        c = Cusp(c)

        # first find an element of SL2Z sending infinity to the given cusp
        w = lift_to_sl2z(c.denominator(), c.numerator(), 0)
        g = SL2Z([w[3], w[1], w[2],w[0]])

        for d in xrange(1,1+self.index()):
            if g * SL2Z([1,d,0,1]) * (~g) in self:
                return (g * SL2Z([1,d,0,1]) * (~g), d, 1)
            elif g * SL2Z([-1,-d,0,-1]) * (~g) in self:
                return (g * SL2Z([-1,-d,0,-1]) * (~g), d, -1)
        raise ArithmeticError("Can't get here!")
开发者ID:Babyll,项目名称:sage,代码行数:28,代码来源:arithgroup_generic.py

示例4: _reduce_cusp

# 需要导入模块: from sage.modular.cusps import Cusp [as 别名]
# 或者: from sage.modular.cusps.Cusp import denominator [as 别名]
    def _reduce_cusp(self, c):
        r"""
        Compute a minimal representative for the given cusp c.

        Returns a pair (c', t), where c' is the minimal representative
        for the given cusp, and t is either 1 or -1, as explained
        below. Largely for internal use.

        The minimal representative for a cusp is the element in `P^1(Q)`
        in lowest terms with minimal positive denominator, and minimal
        positive numerator for that denominator.

        Two cusps `u1/v1` and `u2/v2` are equivalent modulo `\Gamma_H(N)`
        if and only if

        - `v1 =  h*v2 (mod N)` and `u1 =  h^(-1)*u2 (mod gcd(v1,N))`

        or

        - `v1 = -h*v2 (mod N)` and `u1 = -h^(-1)*u2 (mod gcd(v1,N))`

        for some `h \in H`. Then t is 1 or -1 as c and c' fall into
        the first or second case, respectively.

        EXAMPLES::

            sage: GammaH(6,[5])._reduce_cusp(Cusp(5,3))
            (1/3, -1)
            sage: GammaH(12,[5])._reduce_cusp(Cusp(8,9))
            (1/3, -1)
            sage: GammaH(12,[5])._reduce_cusp(Cusp(5,12))
            (Infinity, 1)
            sage: GammaH(12,[])._reduce_cusp(Cusp(5,12))
            (5/12, 1)
            sage: GammaH(21,[5])._reduce_cusp(Cusp(-9/14))
            (1/7, 1)
        """
        c = Cusp(c)
        N = int(self.level())
        Cusps = c.parent()
        v = int(c.denominator() % N)
        H = self._list_of_elements_in_H()

        # First, if N | v, take care of this case. If u is in \pm H,
        # then we return Infinity. If not, let u_0 be the minimum
        # of \{ h*u | h \in \pm H \}. Then return u_0/N.
        if not v:
            u = c.numerator() % N
            if u in H:
                return Cusps((1,0)), 1
            if (N-u) in H:
                return Cusps((1,0)), -1
            ls = [ (u*h)%N for h in H ]
            m1 = min(ls)
            m2 = N-max(ls)
            if m1 < m2:
                return Cusps((m1,N)), 1
            else:
                return Cusps((m2,N)), -1

        u = int(c.numerator() % v)
        gcd = get_gcd(N)
        d = gcd(v,N)

        # If (N,v) == 1, let v_0 be the minimal element
        # in \{ v * h | h \in \pm H \}. Then we either return
        # Infinity or 1/v_0, as v is or is not in \pm H,
        # respectively.
        if d == 1:
            if v in H:
                return Cusps((0,1)), 1
            if (N-v) in H:
                return Cusps((0,1)), -1
            ls = [ (v*h)%N for h in H ]
            m1 = min(ls)
            m2 = N-max(ls)
            if m1 < m2:
                return Cusps((1,m1)), 1
            else:
                return Cusps((1,m2)), -1

        val_min = v
        inv_mod = get_inverse_mod(N)

        # Now we're in the case (N,v) > 1. So we have to do several
        # steps: first, compute v_0 as above. While computing this
        # minimum, keep track of *all* pairs of (h,s) which give this
        # value of v_0.
        hs_ls = [(1,1)]
        for h in H:
            tmp = (v*h)%N

            if tmp < val_min:
                val_min = tmp
                hs_ls = [(inv_mod(h,N), 1)]
            elif tmp == val_min:
                hs_ls.append((inv_mod(h,N), 1))

            if (N-tmp) < val_min:
                val_min = N - tmp
#.........这里部分代码省略.........
开发者ID:robertwb,项目名称:sage,代码行数:103,代码来源:congroup_gammaH.py


注:本文中的sage.modular.cusps.Cusp.denominator方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。