当前位置: 首页>>代码示例>>Python>>正文


Python magma.eval函数代码示例

本文整理汇总了Python中sage.interfaces.all.magma.eval函数的典型用法代码示例。如果您正苦于以下问题:Python eval函数的具体用法?Python eval怎么用?Python eval使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了eval函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: charpoly_GF

def charpoly_GF(n=100, p=16411, system='sage'):
    """
    Given a n x n matrix over GF with random entries, compute the
    charpoly.

    INPUT:

    - ``n`` - matrix dimension (default: 100)
    - ``p`` - prime number (default: ``16411``)
    - ``system`` - either 'magma' or 'sage' (default: 'sage')

    EXAMPLES::

        sage: import sage.matrix.benchmark as b
        sage: ts = b.charpoly_GF(100)
        sage: tm = b.charpoly_GF(100, system='magma')  # optional - magma
    """
    if system == 'sage':
        A = random_matrix(GF(p), n, n)
        t = cputime()
        v = A.charpoly()
        return cputime(t)
    elif system == 'magma':
        code = """
n := %s;
A := Random(MatrixAlgebra(GF(%s), n));
t := Cputime();
K := CharacteristicPolynomial(A);
s := Cputime(t);
"""%(n,p)
        if verbose: print code
        magma.eval(code)
        return magma.eval('s')
    else:
        raise ValueError('unknown system "%s"'%system)
开发者ID:BlairArchibald,项目名称:sage,代码行数:35,代码来源:benchmark.py

示例2: rank2_GF

def rank2_GF(n=500, p=16411, system='sage'):
    """
    Rank over GF(p): Given a (n + 10) x n matrix over GF(p) with
    random entries, compute the rank.

    INPUT:

    - ``n`` - matrix dimension (default: 300)
    - ``p`` - prime number (default: ``16411``)
    - ``system`` - either 'magma' or 'sage' (default: 'sage')

    EXAMPLES::

        sage: import sage.matrix.benchmark as b
        sage: ts = b.rank2_GF(500)
        sage: tm = b.rank2_GF(500, system='magma')  # optional - magma
    """
    if system == 'sage':
        A = random_matrix(GF(p), n+10, n)
        t = cputime()
        v = A.rank()
        return cputime(t)
    elif system == 'magma':
        code = """
n := %s;
A := Random(MatrixAlgebra(GF(%s), n));
t := Cputime();
K := Rank(A);
s := Cputime(t);
"""%(n,p)
        if verbose: print code
        magma.eval(code)
        return float(magma.eval('s'))
    else:
        raise ValueError('unknown system "%s"'%system)
开发者ID:BlairArchibald,项目名称:sage,代码行数:35,代码来源:benchmark.py

示例3: nullspace_GF

def nullspace_GF(n=300, p=16411, system='sage'):
    """
    Given a n+1 x n  matrix over GF(p) with random
    entries, compute the nullspace.

    INPUT:

    - ``n`` - matrix dimension (default: 300)
    - ``p`` - prime number (default: ``16411``)
    - ``system`` - either 'magma' or 'sage' (default: 'sage')

    EXAMPLES::

        sage: import sage.matrix.benchmark as b
        sage: ts = b.nullspace_GF(300)
        sage: tm = b.nullspace_GF(300, system='magma')  # optional - magma
    """
    if system == 'sage':
        A = random_matrix(GF(p), n, n+1)
        t = cputime()
        v = A.kernel()
        return cputime(t)
    elif system == 'magma':
        code = """
n := %s;
A := Random(RMatrixSpace(GF(%s), n, n+1));
t := Cputime();
K := Kernel(A);
s := Cputime(t);
"""%(n,p)
        if verbose: print code
        magma.eval(code)
        return magma.eval('s')
    else:
        raise ValueError('unknown system "%s"'%system)
开发者ID:BlairArchibald,项目名称:sage,代码行数:35,代码来源:benchmark.py

示例4: invert_hilbert_QQ

def invert_hilbert_QQ(n=40, system='sage'):
    """
    Runs the benchmark for calculating the inverse of the hilbert
    matrix over rationals of dimension n.

    INPUT:

    - ``n`` - matrix dimension (default: ``300``)
    - ``system`` - either 'sage' or 'magma' (default: 'sage')

    EXAMPLES::

        sage: import sage.matrix.benchmark as b
        sage: ts = b.invert_hilbert_QQ(30)
        sage: tm = b.invert_hilbert_QQ(30, system='magma')  # optional - magma
    """
    if system == 'sage':
        A = hilbert_matrix(n)
        t = cputime()
        d = A**(-1)
        return cputime(t)
    elif system == 'magma':
        code = """
h := HilbertMatrix(%s);
tinit := Cputime();
d := h^(-1);
s := Cputime(tinit);
delete h;
"""%n
        if verbose: print code
        magma.eval(code)
        return float(magma.eval('s'))
开发者ID:BlairArchibald,项目名称:sage,代码行数:32,代码来源:benchmark.py

示例5: EllipticCurve_from_cubic

def EllipticCurve_from_cubic(F, P):
    r"""
    Construct an elliptic curve from a ternary cubic with a rational point.
    
    INPUT:

    - ``F`` -- a homogeneous cubic in three variables with rational
      coefficients (either as a polynomial ring element or as a
      string) defining a smooth plane cubic curve.

    - ``P`` -- a 3-tuple `(x,y,z)` defining a projective point on the
      curve `F=0`.

    OUTPUT:

    (elliptic curve) An elliptic curve (in minimal Weierstrass form)
    isomorphic to the curve `F=0`.

    .. note::

       USES MAGMA - This function will not work on computers that
       do not have magma installed.

    TO DO: implement this without using MAGMA.

    For a more general version, see the function
    ``EllipticCurve_from_plane_curve()``.
    
    EXAMPLES:

    First we find that the Fermat cubic is isomorphic to the curve
    with Cremona label 27a1::
    
        sage: E = EllipticCurve_from_cubic('x^3 + y^3 + z^3', [1,-1,0])  # optional - magma
        sage: E         # optional - magma
        Elliptic Curve defined by y^2 + y = x^3 - 7 over Rational Field
        sage: E.cremona_label()     # optional - magma
        '27a1'
    
    Next we find the minimal model and conductor of the Jacobian of the
    Selmer curve.
    
    ::
    
        sage: E = EllipticCurve_from_cubic('u^3 + v^3 + 60*w^3', [1,-1,0])   # optional - magma
        sage: E                # optional - magma
        Elliptic Curve defined by y^2  = x^3 - 24300 over Rational Field
        sage: E.conductor()    # optional - magma
        24300
    """
    from sage.interfaces.all import magma

    cmd = "P<%s,%s,%s> := ProjectivePlane(RationalField());" % SR(F).variables()
    magma.eval(cmd)
    cmd = "aInvariants(MinimalModel(EllipticCurve(Curve(Scheme(P, %s)),P!%s)));" % (F, P)
    s = magma.eval(cmd)
    return EllipticCurve(rings.RationalField(), eval(s))
开发者ID:jtmurphy89,项目名称:sagelib,代码行数:57,代码来源:constructor.py

示例6: vecmat_ZZ

def vecmat_ZZ(n=300, min=-9, max=9, system='sage', times=200):
    """
    Vector matrix multiplication over ZZ.

    Given an n x n  matrix A over ZZ with random entries
    between min and max, inclusive, and v the first row of A,
    compute the product v * A.

    INPUT:

    - ``n`` - matrix dimension (default: ``300``)
    - ``min`` - minimal value for entries of matrix (default: ``-9``)
    - ``max`` - maximal value for entries of matrix (default: ``9``)
    - ``system`` - either 'sage' or 'magma' (default: 'sage')
    - ``times`` - number of runs (default: ``200``)

    EXAMPLES::

        sage: import sage.matrix.benchmark as b
        sage: ts = b.vecmat_ZZ(300)  # long time
        sage: tm = b.vecmat_ZZ(300, system='magma')  # optional - magma
    """
    if system == 'sage':
        A = random_matrix(ZZ, n, n, x=min, y=max+1)
        v = A.row(0)
        t = cputime()
        for z in range(times):
            w = v * A
        return cputime(t)/times
    elif system == 'magma':
        code = """
n := %s;
A := MatrixAlgebra(IntegerRing(), n)![Random(%s,%s) : i in [1..n^2]];
v := A[1];
t := Cputime();
for z in [1..%s] do
    K := v * A;
end for;
s := Cputime(t);
"""%(n,min,max,times)
        if verbose: print code
        magma.eval(code)
        return float(magma.eval('s'))/times
    else:
        raise ValueError('unknown system "%s"'%system)
开发者ID:BlairArchibald,项目名称:sage,代码行数:45,代码来源:benchmark.py

示例7: matrix_add_ZZ

def matrix_add_ZZ(n=200, min=-9, max=9, system='sage', times=50):
    """
    Matrix addition over ZZ
    Given an n x n matrix A and B over ZZ with random entries between
    ``min`` and ``max``, inclusive, compute A + B ``times`` times.

    INPUT:

    - ``n`` - matrix dimension (default: ``200``)
    - ``min`` - minimal value for entries of matrix (default: ``-9``)
    - ``max`` - maximal value for entries of matrix (default: ``9``)
    - ``system`` - either 'sage' or 'magma' (default: 'sage')
    - ``times`` - number of experiments (default: ``50``)

    EXAMPLES::

        sage: import sage.matrix.benchmark as b
        sage: ts = b.matrix_add_ZZ(200)
        sage: tm = b.matrix_add_ZZ(200, system='magma')  # optional - magma
    """
    if system == 'sage':
        A = random_matrix(ZZ, n, n, x=min, y=max+1)
        B = random_matrix(ZZ, n, n, x=min, y=max+1)
        t = cputime()
        for z in range(times):
            v = A + B
        return cputime(t)/times
    elif system == 'magma':
        code = """
n := %s;
min := %s;
max := %s;
A := MatrixAlgebra(IntegerRing(), n)![Random(min,max) : i in [1..n^2]];
B := MatrixAlgebra(IntegerRing(), n)![Random(min,max) : i in [1..n^2]];
t := Cputime();
for z in [1..%s] do
    K := A + B;
end for;
s := Cputime(t);
"""%(n,min,max,times)
        if verbose: print code
        magma.eval(code)
        return float(magma.eval('s'))/times
    else:
        raise ValueError('unknown system "%s"'%system)
开发者ID:BlairArchibald,项目名称:sage,代码行数:45,代码来源:benchmark.py

示例8: MatrixVector_QQ

def MatrixVector_QQ(n=1000,h=100,system='sage',times=1):
    """
    Compute product of square ``n`` matrix by random vector with num and
    denom bounded by ``h`` the given number of ``times``.

    INPUT:

    - ``n`` - matrix dimension (default: ``300``)
    - ``h`` - numerator and denominator bound (default: ``bnd``)
    - ``system`` - either 'sage' or 'magma' (default: 'sage')
    - ``times`` - number of experiments (default: ``1``)

    EXAMPLES::

        sage: import sage.matrix.benchmark as b
        sage: ts = b.MatrixVector_QQ(500)
        sage: tm = b.MatrixVector_QQ(500, system='magma')  # optional - magma
    """
    if system=='sage':
        V=QQ**n
        v=V.random_element(h)
        M=random_matrix(QQ,n)
        t=cputime()
        for i in range(times):
            w=M*v
        return cputime(t)
    elif system == 'magma':
        code = """
            n:=%s;
            h:=%s;
            times:=%s;
            v:=VectorSpace(RationalField(),n)![Random(h)/(Random(h)+1) : i in [1..n]];
            M:=MatrixAlgebra(RationalField(),n)![Random(h)/(Random(h)+1) : i in [1..n^2]];
            t := Cputime();
            for z in [1..times] do
                W:=v*M;
            end for;
            s := Cputime(t);
        """%(n,h,times)
        if verbose: print code
        magma.eval(code)
        return float(magma.eval('s'))
    else:
        raise ValueError('unknown system "%s"'%system)
开发者ID:BlairArchibald,项目名称:sage,代码行数:44,代码来源:benchmark.py

示例9: matrix_multiply_QQ

def matrix_multiply_QQ(n=100, bnd=2, system='sage', times=1):
    """
    Given an n x n matrix A over QQ with random entries
    whose numerators and denominators are bounded by bnd,
    compute A * (A+1).

    INPUT:

    - ``n`` - matrix dimension (default: ``300``)
    - ``bnd`` - numerator and denominator bound (default: ``bnd``)
    - ``system`` - either 'sage' or 'magma' (default: 'sage')
    - ``times`` - number of experiments (default: ``1``)

    EXAMPLES::

        sage: import sage.matrix.benchmark as b
        sage: ts = b.matrix_multiply_QQ(100)
        sage: tm = b.matrix_multiply_QQ(100, system='magma')  # optional - magma
    """
    if system == 'sage':
        A = random_matrix(QQ, n, n, num_bound=bnd, den_bound=bnd)
        B = A + 1
        t = cputime()
        for z in range(times):
            v = A * B
        return cputime(t)/times
    elif system == 'magma':
        A = magma(random_matrix(QQ, n, n, num_bound=bnd, den_bound=bnd))
        code = """
n := %s;
A := %s;
B := A + 1;
t := Cputime();
for z in [1..%s] do
    K := A * B;
end for;
s := Cputime(t);
"""%(n, A.name(), times)
        if verbose: print code
        magma.eval(code)
        return float(magma.eval('s'))/times
    else:
        raise ValueError('unknown system "%s"'%system)
开发者ID:BlairArchibald,项目名称:sage,代码行数:43,代码来源:benchmark.py

示例10: matrix_multiply_GF

def matrix_multiply_GF(n=100, p=16411, system='sage', times=3):
    """
    Given an n x n matrix A over GF(p) with random entries, compute
    A * (A+1).

    INPUT:

    - ``n`` - matrix dimension (default: 100)
    - ``p`` - prime number (default: ``16411``)
    - ``system`` - either 'magma' or 'sage' (default: 'sage')
    - ``times`` - number of experiments (default: ``3``)

    EXAMPLES::

        sage: import sage.matrix.benchmark as b
        sage: ts = b.matrix_multiply_GF(100, p=19)
        sage: tm = b.matrix_multiply_GF(100, p=19, system='magma')  # optional - magma
    """
    if system == 'sage':
        A = random_matrix(GF(p), n)
        B = A + 1
        t = cputime()
        for n in range(times):
            v = A * B
        return cputime(t) / times
    elif system == 'magma':
        code = """
n := %s;
A := Random(MatrixAlgebra(GF(%s), n));
B := A + 1;
t := Cputime();
for z in [1..%s] do
    K := A * B;
end for;
s := Cputime(t);
"""%(n,p,times)
        if verbose: print code
        magma.eval(code)
        return float(magma.eval('s'))/times
    else:
        raise ValueError('unknown system "%s"'%system)
开发者ID:BlairArchibald,项目名称:sage,代码行数:41,代码来源:benchmark.py

示例11: matrix_add_GF

def matrix_add_GF(n=1000, p=16411, system='sage',times=100):
    """
    Given two n x n matrix over GF(p) with random entries, add them.

    INPUT:

    - ``n`` - matrix dimension (default: 300)
    - ``p`` - prime number (default: ``16411``)
    - ``system`` - either 'magma' or 'sage' (default: 'sage')
    - ``times`` - number of experiments (default: ``100``)

    EXAMPLES::

        sage: import sage.matrix.benchmark as b
        sage: ts = b.matrix_add_GF(500, p=19)
        sage: tm = b.matrix_add_GF(500, p=19, system='magma')  # optional - magma
    """
    if system == 'sage':
        A = random_matrix(GF(p), n, n)
        B = random_matrix(GF(p), n, n)
        t = cputime()
        for n in range(times):
            v = A + B
        return cputime(t)
    elif system == 'magma':
        code = """
n := %s;
A := Random(MatrixAlgebra(GF(%s), n));
B := Random(MatrixAlgebra(GF(%s), n));
t := Cputime();
for z in [1..%s] do
    K := A + B;
end for;
s := Cputime(t);
"""%(n,p,p,times)
        if verbose: print(code)
        magma.eval(code)
        return magma.eval('s')
    else:
        raise ValueError('unknown system "%s"'%system)
开发者ID:drupel,项目名称:sage,代码行数:40,代码来源:benchmark.py

示例12: nullspace_RDF

def nullspace_RDF(n=300, min=0, max=10, system='sage'):
    """
    Nullspace over RDF:
    Given a n+1 x n  matrix over RDF with random entries
    between min and max, compute the nullspace.

    INPUT:

    - ``n`` - matrix dimension (default: ``300``)
    - ``min`` - minimal value for entries of matrix (default: ``0``)
    - ``max`` - maximal value for entries of matrix (default: `10``)
    - ``system`` - either 'sage' or 'magma' (default: 'sage')

    EXAMPLES::

        sage: import sage.matrix.benchmark as b
        sage: ts = b.nullspace_RDF(100)  # long time
        sage: tm = b.nullspace_RDF(100, system='magma')  # optional - magma
    """
    if system == 'sage':
        from sage.rings.real_double import RDF
        A = random_matrix(ZZ, n+1, n, x=min, y=max+1).change_ring(RDF)
        t = cputime()
        v = A.kernel()
        return cputime(t)
    elif system == 'magma':
        code = """
n := %s;
A := RMatrixSpace(RealField(16), n+1,n)![Random(%s,%s) : i in [1..n*(n+1)]];
t := Cputime();
K := Kernel(A);
s := Cputime(t);
"""%(n,min,max)
        if verbose: print code
        magma.eval(code)
        return float(magma.eval('s'))
    else:
        raise ValueError('unknown system "%s"'%system)
开发者ID:BlairArchibald,项目名称:sage,代码行数:38,代码来源:benchmark.py

示例13: det_QQ

def det_QQ(n=300, num_bound=10, den_bound=10, system='sage'):
    """
    Dense rational determinant over QQ.
    Given an n x n matrix A over QQ with random entries
    with numerator bound and denominator bound, compute det(A).

    INPUT:

    - ``n`` - matrix dimension (default: ``200``)
    - ``num_bound`` - numerator bound, inclusive (default: ``10``)
    - ``den_bound`` - denominator bound, inclusive (default: ``10``)
    - ``system`` - either 'sage' or 'magma' (default: 'sage')

    EXAMPLES::

        sage: import sage.matrix.benchmark as b
        sage: ts = b.det_QQ(200)
        sage: ts = b.det_QQ(10, num_bound=100000, den_bound=10000)
        sage: tm = b.det_QQ(200, system='magma')  # optional - magma
    """
    if system == 'sage':
        A = random_matrix(QQ, n, n, num_bound=num_bound, den_bound=den_bound)
        t = cputime()
        d = A.determinant()
        return cputime(t)
    elif system == 'magma':
        code = """
n := %s;
A := MatrixAlgebra(RationalField(), n)![Random(%s,%s)/Random(1,%s) : i in [1..n^2]];
t := Cputime();
d := Determinant(A);
s := Cputime(t);
"""%(n,-num_bound, num_bound, den_bound)
        if verbose: print code
        magma.eval(code)
        return float(magma.eval('s'))
    else:
        raise ValueError('unknown system "%s"'%system)
开发者ID:BlairArchibald,项目名称:sage,代码行数:38,代码来源:benchmark.py

示例14: rank2_ZZ

def rank2_ZZ(n=400, min=0, max=2**64, system='sage'):
    """
    Rank 2 over ZZ:
    Given a (n + 10) x n matrix over ZZ with random entries
    between min and max, compute the rank.

    INPUT:

    - ``n`` - matrix dimension (default: ``400``)
    - ``min`` - minimal value for entries of matrix (default: ``0``)
    - ``max`` - maximal value for entries of matrix (default: ``2**64``)
    - ``system`` - either 'sage' or 'magma' (default: 'sage')

    EXAMPLES::

        sage: import sage.matrix.benchmark as b
        sage: ts = b.rank2_ZZ(300)
        sage: tm = b.rank2_ZZ(300, system='magma')  # optional - magma
    """
    if system == 'sage':
        A = random_matrix(ZZ, n+10, n, x=min, y=max+1)
        t = cputime()
        v = A.rank()
        return cputime(t)
    elif system == 'magma':
        code = """
n := %s;
A := RMatrixSpace(IntegerRing(), n+10, n)![Random(%s,%s) : i in [1..n*(n+10)]];
t := Cputime();
K := Rank(A);
s := Cputime(t);
"""%(n,min,max)
        if verbose: print code
        magma.eval(code)
        return float(magma.eval('s'))
    else:
        raise ValueError('unknown system "%s"'%system)
开发者ID:BlairArchibald,项目名称:sage,代码行数:37,代码来源:benchmark.py

示例15: det_ZZ

def det_ZZ(n=200, min=1, max=100, system='sage'):
    """
    Dense integer determinant over ZZ.
    Given an n x n matrix A over ZZ with random entries
    between min and max, inclusive, compute det(A).

    INPUT:

    - ``n`` - matrix dimension (default: ``200``)
    - ``min`` - minimal value for entries of matrix (default: ``1``)
    - ``max`` - maximal value for entries of matrix (default: ``100``)
    - ``system`` - either 'sage' or 'magma' (default: 'sage')

    EXAMPLES::

        sage: import sage.matrix.benchmark as b
        sage: ts = b.det_ZZ(200)
        sage: tm = b.det_ZZ(200, system='magma')  # optional - magma
    """
    if system == 'sage':
        A = random_matrix(ZZ, n, n, x=min, y=max+1)
        t = cputime()
        d = A.determinant()
        return cputime(t)
    elif system == 'magma':
        code = """
n := %s;
A := MatrixAlgebra(IntegerRing(), n)![Random(%s,%s) : i in [1..n^2]];
t := Cputime();
d := Determinant(A);
s := Cputime(t);
"""%(n,min,max)
        if verbose: print code
        magma.eval(code)
        return float(magma.eval('s'))
    else:
        raise ValueError('unknown system "%s"'%system)
开发者ID:BlairArchibald,项目名称:sage,代码行数:37,代码来源:benchmark.py


注:本文中的sage.interfaces.all.magma.eval函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。