当前位置: 首页>>代码示例>>Python>>正文


Python CartanType.is_untwisted_affine方法代码示例

本文整理汇总了Python中sage.combinat.root_system.cartan_type.CartanType.is_untwisted_affine方法的典型用法代码示例。如果您正苦于以下问题:Python CartanType.is_untwisted_affine方法的具体用法?Python CartanType.is_untwisted_affine怎么用?Python CartanType.is_untwisted_affine使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.combinat.root_system.cartan_type.CartanType的用法示例。


在下文中一共展示了CartanType.is_untwisted_affine方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __classcall_private__

# 需要导入模块: from sage.combinat.root_system.cartan_type import CartanType [as 别名]
# 或者: from sage.combinat.root_system.cartan_type.CartanType import is_untwisted_affine [as 别名]
    def __classcall_private__(cls, cartan_type, r, s):
        """
        Normalize the input arguments to ensure unique representation.

        EXAMPLES::

            sage: KRT1 = KirillovReshetikhinTableaux(CartanType(['A',3,1]), 2, 3)
            sage: KRT2 = KirillovReshetikhinTableaux(['A',3,1], 2, 3)
            sage: KRT1 is KRT2
            True
        """
        ct = CartanType(cartan_type)
        assert ct.is_affine()

        if ct.is_untwisted_affine():
            if ct.letter == 'D':
                if r == ct.n or r == ct.n - 1:
                    return KRTableauxSpin(ct, r, s)
                return KRTableauxTypeVertical(ct, r, s)

            if ct.letter == 'B':
                if r == ct.n:
                    return KRTableauxBn(ct, r, s)
                return KRTypeVertical(ct, r, s)

            if ct.letter == 'A' or (ct.letter == 'C' and r == ct.n):
                return KRTableauxRectangle(ct, r, s)
        else:
            if ct.dual().letter == 'B':
                return KRTableauxTypeVertical(ct, r, s)

        raise NotImplementedError
开发者ID:pombredanne,项目名称:sage-1,代码行数:34,代码来源:kr_tableaux.py

示例2: __classcall_private__

# 需要导入模块: from sage.combinat.root_system.cartan_type import CartanType [as 别名]
# 或者: from sage.combinat.root_system.cartan_type.CartanType import is_untwisted_affine [as 别名]
    def __classcall_private__(cls, arg0, cartan_type=None, kac_moody=True):
        """
        Parse input to ensure a unique representation.

        INPUT:

        - ``arg0`` -- a simple Lie algebra or a base ring
        - ``cartan_type`` -- a Cartan type

        EXAMPLES::

            sage: L1 = lie_algebras.Affine(QQ, ['A',4,1])
            sage: cl = lie_algebras.sl(QQ, 5)
            sage: L2 = lie_algebras.Affine(cl)
            sage: L1 is L2
            True
            sage: cl.affine() is L1
            True
        """
        if isinstance(arg0, LieAlgebra):
            ct = arg0.cartan_type()
            if not ct.is_finite():
                raise ValueError("the base Lie algebra is not simple")
            cartan_type = ct.affine()
            g = arg0
        else:
            # arg0 is the base ring
            cartan_type = CartanType(cartan_type)
            if not cartan_type.is_affine():
                raise ValueError("the Cartan type must be affine")
            g = LieAlgebra(arg0, cartan_type=cartan_type.classical())

        if not cartan_type.is_untwisted_affine():
            raise NotImplementedError("only currently implemented for untwisted affine types")
        return super(AffineLieAlgebra, cls).__classcall__(cls, g, kac_moody)
开发者ID:sagemath,项目名称:sage,代码行数:37,代码来源:affine_lie_algebra.py

示例3: __classcall__

# 需要导入模块: from sage.combinat.root_system.cartan_type import CartanType [as 别名]
# 或者: from sage.combinat.root_system.cartan_type.CartanType import is_untwisted_affine [as 别名]
    def __classcall__(cls, base_ring, cartan_type, level=None, twisted=False):
        """
        Normalize arguments to ensure a unique representation.

        EXAMPLES::

            sage: Q1 = QSystem(QQ, ['A',4])
            sage: Q2 = QSystem(QQ, 'A4')
            sage: Q1 is Q2
            True

        Twisted Q-systems are different from untwisted Q-systems::

            sage: Q1 = QSystem(QQ, ['E',6,2], twisted=True)
            sage: Q2 = QSystem(QQ, ['E',6,2])
            sage: Q1 is Q2
            False
        """
        cartan_type = CartanType(cartan_type)
        if not is_tamely_laced(cartan_type):
            raise ValueError("the Cartan type is not tamely-laced")
        if twisted and not cartan_type.is_affine() and not cartan_type.is_untwisted_affine():
            raise ValueError("the Cartan type must be of twisted type")
        return super(QSystem, cls).__classcall__(cls, base_ring, cartan_type, level, twisted)
开发者ID:saraedum,项目名称:sage-renamed,代码行数:26,代码来源:q_system.py

示例4: FundamentalGroupOfExtendedAffineWeylGroup

# 需要导入模块: from sage.combinat.root_system.cartan_type import CartanType [as 别名]
# 或者: from sage.combinat.root_system.cartan_type.CartanType import is_untwisted_affine [as 别名]

#.........这里部分代码省略.........
        1   2   3
        B3~
        sage: F.special_nodes()
        (0, 1)

        sage: F = FundamentalGroupOfExtendedAffineWeylGroup("C2"); F
        Fundamental group of type ['C', 2, 1]
        sage: F.cartan_type().dynkin_diagram()
        O=>=O=<=O
        0   1   2
        C2~
        sage: F.special_nodes()
        (0, 2)

        sage: F = FundamentalGroupOfExtendedAffineWeylGroup("D4"); F
        Fundamental group of type ['D', 4, 1]
        sage: F.cartan_type().dynkin_diagram()
            O 4
            |
            |
        O---O---O
        1   |2  3
            |
            O 0
        D4~
        sage: F.special_nodes()
        (0, 1, 3, 4)
        sage: (F(4), F(4)^2)
        (pi[4], pi[0])

        sage: F = FundamentalGroupOfExtendedAffineWeylGroup("D5"); F
        Fundamental group of type ['D', 5, 1]
        sage: F.cartan_type().dynkin_diagram()
          0 O   O 5
            |   |
            |   |
        O---O---O---O
        1   2   3   4
        D5~
        sage: F.special_nodes()
        (0, 1, 4, 5)
        sage: (F(5), F(5)^2, F(5)^3, F(5)^4)
        (pi[5], pi[1], pi[4], pi[0])
        sage: F = FundamentalGroupOfExtendedAffineWeylGroup("E6"); F
        Fundamental group of type ['E', 6, 1]
        sage: F.cartan_type().dynkin_diagram()
                O 0
                |
                |
                O 2
                |
                |
        O---O---O---O---O
        1   3   4   5   6
        E6~
        sage: F.special_nodes()
        (0, 1, 6)
        sage: F(1)^2
        pi[6]

        sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['D',4,2]); F
        Fundamental group of type ['C', 3, 1]^*
        sage: F.cartan_type().dynkin_diagram()
        O=<=O---O=>=O
        0   1   2   3
        C3~*
        sage: F.special_nodes()
        (0, 3)

    We also implement a fundamental group for `GL_n`. It is defined to be the group of integers, which is the
    covering group of the fundamental group Z/nZ for affine `SL_n`::

        sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',2,1], general_linear=True); F
        Fundamental group of GL(3)
        sage: x = F.an_element(); x
        pi[5]
        sage: x*x
        pi[10]
        sage: x.inverse()
        pi[-5]
        sage: wt = F.cartan_type().classical().root_system().ambient_space().an_element(); wt
        (2, 2, 3)
        sage: x.act_on_classical_ambient(wt)
        (2, 3, 2)
        sage: w = WeylGroup(F.cartan_type(),prefix="s").an_element(); w
        s0*s1*s2
        sage: x.act_on_affine_weyl(w)
        s2*s0*s1
    """
    cartan_type = CartanType(cartan_type)
    if cartan_type.is_finite():
        cartan_type = cartan_type.affine()
    if not cartan_type.is_affine():
        raise NotImplementedError("Cartan type is not affine")
    if general_linear is True:
        if cartan_type.is_untwisted_affine() and cartan_type.type() == "A":
            return FundamentalGroupGL(cartan_type, prefix)
        else:
            raise ValueError("General Linear Fundamental group is untwisted type A")
    return FundamentalGroupOfExtendedAffineWeylGroup_Class(cartan_type,prefix,finite=True)
开发者ID:saraedum,项目名称:sage-renamed,代码行数:104,代码来源:fundamental_group.py


注:本文中的sage.combinat.root_system.cartan_type.CartanType.is_untwisted_affine方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。