当前位置: 首页>>代码示例>>Python>>正文


Python QQ.denominator方法代码示例

本文整理汇总了Python中sage.all.QQ.denominator方法的典型用法代码示例。如果您正苦于以下问题:Python QQ.denominator方法的具体用法?Python QQ.denominator怎么用?Python QQ.denominator使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.all.QQ的用法示例。


在下文中一共展示了QQ.denominator方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: TestMultiplier

# 需要导入模块: from sage.all import QQ [as 别名]
# 或者: from sage.all.QQ import denominator [as 别名]
class TestMultiplier(MultiplierSystem):
    r"""
    Test of multiplier for f(q). As in e.g. the paper of Bringmann and Ono.
    """
    def __init__(self,group,dchar=(0,0),dual=False,weight=QQ(1)/QQ(2),dimension=1,version=1,**kwargs):
        self._weight=QQ(weight)
        MultiplierSystem.__init__(self,group,dchar=dchar,dual=dual,dimension=dimension,**kwargs)
        self._k_den=self._weight.denominator()
        self._k_num=self._weight.numerator()
        self._K = CyclotomicField(12*self._k_den)
        self._z = self._K.gen()**self._k_num
        self._sqrti = CyclotomicField(8).gen()
        self._i = CyclotomicField(4).gen()
        self._fak = CyclotomicField(2*self._k_den).gen()**-self._k_num
        self._fak_arg=QQ(self._weight)/QQ(2)
        self._version = version
        self.is_consistent(weight) # test consistency


    def order(self):
        return 12*self._k_den

    def z(self):
        return self._z

    def __repr__(self):
        s="Test multiplier"
        if self._character<>None and not self._character.is_trivial():
            s+="and character "+str(self._character)
        return s


        
    def _action(self,A):
        [a,b,c,d]=A
        fak=0
        if c<0:
            a=-a; b=-b; c=-c;  d=-d; fak=self._fak_arg
        if c==0:
            if a>0:
                res = self._z**-b
            else:
                res = self._fak*self._z**-b
        else:
            arg=-QQ(1)/QQ(8)+QQ(c+a*d+1)/QQ(4)-QQ(a+d)/QQ(24*c)-QQ(a)/QQ(4)+QQ(3*d*c)/QQ(8)
            # print "arg=",arg
            arg = arg-dedekind_sum(-d,c)/QQ(2)+fak #self._fak_arg
            den=arg.denominator()
            num=arg.numerator()
            # print "den=",den
            # print  "num=",num
            res = self._K(CyclotomicField(den).gen())**num
            #res = res*fak
        if self._is_dual:
            return res**-1
        return res
开发者ID:nilsskoruppa,项目名称:psage,代码行数:58,代码来源:multiplier_systems.py

示例2: _latex_using_dpd_depth1

# 需要导入模块: from sage.all import QQ [as 别名]
# 或者: from sage.all.QQ import denominator [as 别名]
 def _latex_using_dpd_depth1(self, dpd_dct):
     names = [dpd_dct[c] for c in self._consts]
     _gcd = QQ(gcd(self._coeffs))
     coeffs = [c / _gcd for c in self._coeffs]
     coeffs_names = [(c, n) for c, n in zip(coeffs, names) if c != 0]
     tail_terms = ["%s %s %s" % ("+" if c > 0 else "", c, n) for c, n in coeffs_names[1:]]
     c0, n0 = coeffs_names[0]
     head_term = str(c0) + " " + str(n0)
     return r"\frac{{{pol_num}}}{{{pol_dnm}}} \left({terms}\right)".format(
         pol_dnm=latex(_gcd.denominator() * self._scalar_const._polynomial_expr()),
         pol_num=latex(_gcd.numerator()),
         terms=" ".join([head_term] + tail_terms),
     )
开发者ID:stakemori,项目名称:degree2,代码行数:15,代码来源:const.py

示例3: get_cusp_expansions_of_newform

# 需要导入模块: from sage.all import QQ [as 别名]
# 或者: from sage.all.QQ import denominator [as 别名]
def get_cusp_expansions_of_newform(k, N=1, fi=0, prec=10):
    r"""
    Get and return Fourier coefficients of all cusps where there exist Atkin-Lehner involutions for these cusps.

    INPUT:

     - ''k'' -- positive integer : the weight
     - ''N'' -- positive integer (default 1) : level
     - ''fi'' -- non-neg. integer (default 0) We want to use the element nr. fi f=Newforms(N,k)[fi]
     - ''prec'' -- integer (the number of coefficients to get)

     OUTPUT:

     - ''s'' string giving the Atkin-Lehner eigenvalues corresponding to the Cusps (where possible)
    """
    res = dict()
    (t, f) = _get_newform(k, N, 0, fi)
    if(not t):
        return s
    res[Infinity] = 1
    for c in f.group().cusps():
        if(c == Cusp(Infinity)):
            continue
        res[c] = list()
        cusp = QQ(c)
        q = cusp.denominator()
        p = cusp.numerator()
        d = ZZ(cusp * N)
        if(d == 0):
            ep = f.atkin_lehner_eigenvalue()
        if(d.divides(N) and gcd(ZZ(N / d), ZZ(d)) == 1):
            ep = f.atkin_lehner_eigenvalue(ZZ(d))
        else:
            # this case is not known...
            res[c] = None
            continue
        res[c] = ep
    s = html.table([res.keys(), res.values()])
    return s
开发者ID:arbooker,项目名称:lmfdb,代码行数:41,代码来源:emf_core.py

示例4: EtaMultiplier

# 需要导入模块: from sage.all import QQ [as 别名]
# 或者: from sage.all.QQ import denominator [as 别名]
class EtaMultiplier(MultiplierSystem):
    r"""
    Eta multiplier. Valid for any (real) weight.
    """
    def __init__(self,G,k=QQ(1)/QQ(2),number=0,ch=None,dual=False,version=1,dimension=1,**kwargs):
        r"""
        Initialize the Eta multiplier system: $\nu_{\eta}^{2(k+r)}$.
        INPUT:

        - G -- Group
        - ch -- character
        - dual -- if we have the dual (in this case conjugate)
        - weight -- Weight (recall that eta has weight 1/2 and eta**2k has weight k. If weight<>k we adjust the power accordingly.
        - number -- we consider eta^power (here power should be an integer so as not to change the weight...)
                
        """
        self._weight=QQ(k)
        if floor(self._weight-QQ(1)/QQ(2))==ceil(self._weight-QQ(1)/QQ(2)):
            self._half_integral_weight=1
        else:
            self._half_integral_weight=0
        MultiplierSystem.__init__(self,G,character=ch,dual=dual,dimension=dimension)
        number = number % 12
        if not is_even(number):
            raise ValueError,"Need to have v_eta^(2(k+r)) with r even!"
        self._pow=QQ((self._weight+number)) ## k+r
        self._k_den=self._pow.denominator()
        self._k_num=self._pow.numerator()
        self._K = CyclotomicField(12*self._k_den)
        self._z = self._K.gen()**self._k_num
        self._i = CyclotomicField(4).gen()
        self._fak = CyclotomicField(2*self._k_den).gen()**-self._k_num
        self._version = version
        
        self.is_consistent(k) # test consistency

    def __repr__(self):
        s="Eta multiplier "
        if self._pow<>1:
            s+="to power 2*"+str(self._pow)+" "
        if self._character<>None and not self._character.is_trivial():
            s+=" and character "+str(self._character)
        s+="with weight="+str(self._weight)
        return s
        
    def order(self):
        return 12*self._k_den

    def z(self):
        return self._z
    
     
    def _action(self,A):
        if self._version==1:
            return self._action1(A)
        elif self._version==2:
            return self._action2(A)
        else:
            raise ValueError

    def _action1(self,A):
        [a,b,c,d]=A
        return self._action0(a,b,c,d)
    def _action0(self,a,b,c,d):
        r"""
        Recall that the formula is valid only for c>0. Otherwise we have to use:
        v(A)=v((-I)(-A))=sigma(-I,-A)v(-I)v(-A).
        Then note that by the formula for sigma we have:
        sigma(-I,SL2Z[a, b, c, d])=-1 if (c=0 and d<0) or c>0 and other wise it is =1.
        """

        fak=1
        if c<0:
            a=-a; b=-b; c=-c;  d=-d; fak=-self._fak
        if c==0:
            if a>0:
                res = self._z**b
            else:
                res = self._fak*self._z**b
        else:
            if is_even(c):
                arg = (a+d)*c-b*d*(c*c-1)+3*d-3-3*c*d
                v=kronecker(c,d)
            else:
                arg = (a+d)*c-b*d*(c*c-1)-3*c
                v=kronecker(d,c)
            if not self._half_integral_weight:
                # recall that we can use eta for any real weight
                v=v**(2*self._weight)
            arg=arg*(self._k_num)
            res = v*fak*self._z**arg
            if self._character:
                res = res * self._character(d)
        if self._is_dual:
            res=res**-1
        return res


    def _action2(self,A):
        [a,b,c,d]=A
#.........这里部分代码省略.........
开发者ID:nilsskoruppa,项目名称:psage,代码行数:103,代码来源:multiplier_systems.py

示例5: display_t

# 需要导入模块: from sage.all import QQ [as 别名]
# 或者: from sage.all.QQ import denominator [as 别名]
def display_t(tn, td):
    t = QQ("%d/%d" % (tn, td))
    if t.denominator() == 1:
        return str(t.numerator())
    return "%s/%s" % (str(t.numerator()), str(t.denominator()))
开发者ID:MarkWatkins2014,项目名称:lmfdb,代码行数:7,代码来源:main.py

示例6: make_label

# 需要导入模块: from sage.all import QQ [as 别名]
# 或者: from sage.all.QQ import denominator [as 别名]
def make_label(A,B,tn,td):
    AB_str = ab_label(A,B)
    t = QQ( "%d/%d" % (tn, td))
    t_str = "/t%s.%s" % (str(t.numerator()), str(t.denominator()))
    return AB_str + t_str
开发者ID:MarkWatkins2014,项目名称:lmfdb,代码行数:7,代码来源:main.py

示例7: make_t_label

# 需要导入模块: from sage.all import QQ [as 别名]
# 或者: from sage.all.QQ import denominator [as 别名]
def make_t_label(t):
    tsage = QQ(t)
    return "t%s.%s" % (tsage.numerator(), tsage.denominator())
开发者ID:sanni85,项目名称:lmfdb,代码行数:5,代码来源:main.py

示例8: set_info_for_web_newform

# 需要导入模块: from sage.all import QQ [as 别名]
# 或者: from sage.all.QQ import denominator [as 别名]

#.........这里部分代码省略.........
    elif WNF.is_cm is True:
        s = "- Is a CM-form<br>"
    else:
        s = "- Is not a CM-form<br>"
    properties2.append(("CM info", s))
    alev = WNF.atkin_lehner_eigenvalues()
    info["atkinlehner"] = None
    if isinstance(alev, dict) and len(alev.keys()) > 0 and level != 1:
        s1 = " Atkin-Lehner eigenvalues "
        s2 = ""
        for Q in alev.keys():
            s2 += "\( \omega_{ %s } \) : %s <br>" % (Q, alev[Q])
        properties2.append((s1, s2))
        emf_logger.debug("properties={0}".format(properties2))
        # alev = WNF.atkin_lehner_eigenvalues_for_all_cusps()
        # if isinstance(alev,dict) and len(alev.keys())>0:
        #     emf_logger.debug("alev={0}".format(alev))
        #     info['atkinlehner'] = list()
        #     for Q in alev.keys():
        #         s = "\(" + latex(c) + "\)"
        #         Q = alev[c][0]
        #         ev = alev[c][1]
        #         info['atkinlehner'].append([Q, c, ev])
    if level == 1:
        poly = WNF.explicit_formulas.get("as_polynomial_in_E4_and_E6", "")
        if poly != "":
            d, monom, coeffs = poly
            emf_logger.critical("poly={0}".format(poly))

            info["explicit_formulas"] = "\("
            for i in range(d):
                c = QQ(coeffs[i])
                s = ""
                if d > 1 and i > 0 and c > 0:
                    s = "+"
                if c < 0:
                    s = "-"
                if c.denominator() > 1:
                    cc = "\\frac{{ {0} }}{{ {1} }}".format(abs(c.numerator()), c.denominator())
                else:
                    cc = str(abs(c))
                s += "{0} \cdot ".format(cc)
                a = monom[i][0]
                b = monom[i][1]
                if a == 0 and b != 0:
                    s += "E_6^{{ {0} }}".format(b)
                elif b == 0 and a != 0:
                    s += "E_4^{{ {0} }}".format(a)
                else:
                    s += "E_4^{{ {0} }}E_6^{{ {1} }}".format(a, b)
                info["explicit_formulas"] += s
            info["explicit_formulas"] += " \)"
    cur_url = (
        "?&level=" + str(level) + "&weight=" + str(weight) + "&character=" + str(character) + "&label=" + str(label)
    )
    if len(WNF.parent.hecke_orbits) > 1:
        for label_other in WNF.parent.hecke_orbits.keys():
            if label_other != label:
                s = "Modular form "
                if character:
                    s = s + str(level) + "." + str(weight) + "." + str(character) + str(label_other)
                else:
                    s = s + str(level) + "." + str(weight) + str(label_other)
                url = url_for(
                    "emf.render_elliptic_modular_forms",
                    level=level,
                    weight=weight,
                    character=character,
                    label=label_other,
                )
                friends.append((s, url))

    s = "L-Function "
    if character:
        s = s + str(level) + "." + str(weight) + "." + str(character) + str(label)
    else:
        s = s + str(level) + "." + str(weight) + str(label)
    # url =
    # "/L/ModularForm/GL2/Q/holomorphic?level=%s&weight=%s&character=%s&label=%s&number=%s"
    # %(level,weight,character,label,0)
    url = "/L" + url_for(
        "emf.render_elliptic_modular_forms", level=level, weight=weight, character=character, label=label
    )
    if WNF.coefficient_field_degree > 1:
        for h in range(WNF.coefficient_field_degree):
            s0 = s + ".{0}".format(h)
            url0 = url + "{0}/".format(h)
            friends.append((s0, url0))
    else:
        friends.append((s, url))
    # if there is an elliptic curve over Q associated to self we also list that
    if WNF.weight == 2 and WNF.coefficient_field_degree == 1:
        llabel = str(level) + "." + label
        s = "Elliptic curve isogeny class " + llabel
        url = "/EllipticCurve/Q/" + llabel
        friends.append((s, url))
    info["properties2"] = properties2
    info["friends"] = friends
    info["max_cn"] = WNF.max_cn()
    return info
开发者ID:paulhus,项目名称:lmfdb,代码行数:104,代码来源:emf_render_web_newform.py

示例9: do_addrec

# 需要导入模块: from sage.all import QQ [as 别名]
# 或者: from sage.all.QQ import denominator [as 别名]
def do_addrec(F):
    global newrecs
    degree, weight, A, B, t, famhodge, hodge, conductor, sign, sig, locinfo, lcms, hardness, coeffs  = F
    A,B = orderAB(A,B)
    A.sort(reverse=True)
    B.sort(reverse=True)
    Astr = '.'.join([str(x) for x in A])
    Bstr = '.'.join([str(x) for x in B])
    myt = QQ(str(t[1])+'/'+str(t[0]))
    tstr = str(myt.numerator())+'.'+str(myt.denominator())
    label = "A%s_B%s_t%s" % (Astr, Bstr, tstr)

    data = {
        'label': label,
        'degree': degree,
        'weight': weight,
        't': str(myt),
        'A': list2string(A),
        'B': list2string(B),
        'Arev': list2string(B),
        'Brev': list2string(A),
        'hodge': list2string(hodge),
        'famhodge': list2string(famhodge),
        'sign': sign,
        'sig': sig,
        'req': hardness,
        'coeffs': coeffs,
        'lcms': lcms,
        'cond': conductor,
        'locinfo': locinfo,
        'centralval': 0
    }
    for p in [2,3,5,7]:
        mod = modpair(A,B,p)
        mod = killdup(mod[0],mod[1])
        data['A'+str(p)] = list2string(mod[0])
        data['B'+str(p)] = list2string(mod[1])
        data['C'+str(p)] = list2string(mod[2])
        mod = modpair(B,A,p)
        mod = killdup(mod[0],mod[1])
        data['A'+str(p)+'rev'] = list2string(mod[0])
        data['B'+str(p)+'rev'] = list2string(mod[1])
        mod = modupperpair(A,B,p)
        mod = killdup(mod[0],mod[1])
        data['Au'+str(p)] = list2string(mod[0])
        data['Bu'+str(p)] = list2string(mod[1])
        data['Cu'+str(p)] = list2string(mod[2])
        data['Bu'+str(p)+'rev'] = list2string(mod[0])
        data['Au'+str(p)+'rev'] = list2string(mod[1])

    is_new = True
    for field in hgm.find({'label': label}):
        is_new = False
        break

    for k in newrecs:
        if k['label'] == label:
            is_new = False
            break

    if is_new:
        #print "new family"
        newrecs.append(data)
开发者ID:LMFDB,项目名称:lmfdb,代码行数:65,代码来源:import_hgm.py

示例10: fix_t

# 需要导入模块: from sage.all import QQ [as 别名]
# 或者: from sage.all.QQ import denominator [as 别名]
def fix_t(t):
    tsage = QQ("%d/%d" % (t[0], t[1]))
    return [int(tsage.numerator()), int(tsage.denominator())]
开发者ID:AurelPage,项目名称:lmfdb,代码行数:5,代码来源:import_hgm.py

示例11: make_t_label

# 需要导入模块: from sage.all import QQ [as 别名]
# 或者: from sage.all.QQ import denominator [as 别名]
def make_t_label(t):
    tsage = QQ("%d/%d" % (t[0], t[1]))
    return "t%s.%s" % (tsage.numerator(), tsage.denominator())
开发者ID:StockpotCreative,项目名称:lmfdb,代码行数:5,代码来源:main.py

示例12: hgm_search

# 需要导入模块: from sage.all import QQ [as 别名]
# 或者: from sage.all.QQ import denominator [as 别名]
def hgm_search(**args):
    info = to_dict(args)
    bread = get_bread([("Search results", url_for('.search'))])
    C = base.getDBConnection()
    query = {}
    if 'jump_to' in info:
        return render_hgm_webpage({'label': info['jump_to']})

    family_search = False
    if info.get('Submit Family') or info.get('family'):
        family_search = True

    # generic, irreducible not in DB yet
    for param in ['A', 'B', 'hodge', 'a2', 'b2', 'a3', 'b3', 'a5', 'b5', 'a7', 'b7']:
        if info.get(param):
            info[param] = clean_input(info[param])
            if IF_RE.match(info[param]):
                query[param] = split_list(info[param])
                query[param].sort()
            else:
                name = param
                if field == 'hodge':
                    name = 'Hodge vector'
                info['err'] = 'Error parsing input for %s.  It needs to be a list of integers in square brackets, such as [2,3] or [1,1,1]' % name
                return search_input_error(info, bread)

    if info.get('t') and not family_search:
        info['t'] = clean_input(info['t'])
        try:
            tsage = QQ(str(info['t']))
            tlist = [int(tsage.numerator()), int(tsage.denominator())]
            query['t'] = tlist
        except:
            info['err'] = 'Error parsing input for t.  It needs to be a rational number, such as 2/3 or -3'

    # sign can only be 1, -1, +1
    if info.get('sign') and not family_search:
        sign = info['sign']
        sign = re.sub(r'\s','',sign)
        sign = clean_input(sign)
        if sign == '+1':
            sign = '1'
        if not (sign == '1' or sign == '-1'):
            info['err'] = 'Error parsing input %s for sign.  It needs to be 1 or -1' % sign
            return search_input_error(info, bread)
        query['sign'] = int(sign)


    for param in ['degree','weight','conductor']:
        # We don't look at conductor in family searches
        if info.get(param) and not (param=='conductor' and family_search):
            if param=='conductor':
                cond = info['conductor']
                try:
                    cond = re.sub(r'(\d)\s+(\d)', r'\1 * \2', cond) # implicit multiplication of numbers
                    cond = cond.replace(r'..', r'-') # all ranges use -
                    cond = re.sub(r'[a..zA..Z]', '', cond)
                    cond = clean_input(cond)
                    tmp = parse_range2(cond, 'cond', myZZ)
                except:
                    info['err'] = 'Error parsing input for conductor.  It needs to be an integer (e.g., 8), a range of integers (e.g. 10-100), or a list of such (e.g., 5,7,8,10-100).  Integers may be given in factored form (e.g. 2^5 3^2) %s' % cond
                    return search_input_error(info, bread)
            else: # not conductor
                info[param] = clean_input(info[param])
                ran = info[param]
                ran = ran.replace(r'..', r'-')
                if LIST_RE.match(ran):
                    tmp = parse_range2(ran, param)
                else:
                    names = {'weight': 'weight', 'degree': 'degree'}
                    info['err'] = 'Error parsing input for the %s.  It needs to be an integer (such as 5), a range of integers (such as 2-10 or 2..10), or a comma-separated list of these (such as 2,3,8 or 3-5, 7, 8-11).' % names[param]
                    return search_input_error(info, bread)
            # work around syntax for $or
            # we have to foil out multiple or conditions
            if tmp[0] == '$or' and '$or' in query:
                newors = []
                for y in tmp[1]:
                    oldors = [dict.copy(x) for x in query['$or']]
                    for x in oldors:
                        x.update(y)
                    newors.extend(oldors)
                tmp[1] = newors
            query[tmp[0]] = tmp[1]

    #print query
    count_default = 20
    if info.get('count'):
        try:
            count = int(info['count'])
        except:
            count = count_default
    else:
        count = count_default
    info['count'] = count

    start_default = 0
    if info.get('start'):
        try:
            start = int(info['start'])
            if(start < 0):
#.........这里部分代码省略.........
开发者ID:StockpotCreative,项目名称:lmfdb,代码行数:103,代码来源:main.py

示例13: set_info_for_web_newform

# 需要导入模块: from sage.all import QQ [as 别名]
# 或者: from sage.all.QQ import denominator [as 别名]

#.........这里部分代码省略.........
            info['CM_values'] = CM
    info['is_cm'] = WNF.is_cm
    if WNF.is_cm:
        info['cm_field'] = "2.0.{0}.1".format(-WNF.cm_disc)
        info['cm_disc'] = WNF.cm_disc
        info['cm_field_knowl'] = nf_display_knowl(info['cm_field'], getDBConnection(), field_pretty(info['cm_field']))
        info['cm_field_url'] = url_for("number_fields.by_label", label=info["cm_field"])
    if WNF.is_cm is None:
        s = '- Unknown (insufficient data)<br>'
    elif WNF.is_cm:
        s = 'Is a CM-form<br>'
    else:
        s = 'Is not a CM-form<br>'
    properties2.append(('CM info', s))
    alev = WNF.atkin_lehner_eigenvalues()
    info['atkinlehner'] = None
    if isinstance(alev,dict) and len(alev.keys())>0 and level != 1:
        s1 = " Atkin-Lehner eigenvalues "
        s2 = ""
        for Q in alev.keys():
            s2 += "\( \omega_{ %s } \) : %s <br>" % (Q, alev[Q])
        properties2.append((s1, s2))
        emf_logger.debug("properties={0}".format(properties2))
        # alev = WNF.atkin_lehner_eigenvalues_for_all_cusps() 
        # if isinstance(alev,dict) and len(alev.keys())>0:
        #     emf_logger.debug("alev={0}".format(alev))
        #     info['atkinlehner'] = list()
        #     for Q in alev.keys():
        #         s = "\(" + latex(c) + "\)"
        #         Q = alev[c][0]
        #         ev = alev[c][1]
        #         info['atkinlehner'].append([Q, c, ev])
    if(level == 1):
        poly = WNF.explicit_formulas.get('as_polynomial_in_E4_and_E6','')
        if poly != '':
            d,monom,coeffs = poly
            emf_logger.critical("poly={0}".format(poly))
            info['explicit_formulas'] = '\('
            for i in range(len(coeffs)):
                c = QQ(coeffs[i])
                s = ""
                if d>1 and i >0 and c>0:
                    s="+"
                if c<0:
                    s="-"
                if c.denominator()>1:
                    cc = "\\frac{{ {0} }}{{ {1} }}".format(abs(c.numerator()),c.denominator())
                else:
                    cc = str(abs(c))
                s += "{0} \cdot ".format(cc)
                a = monom[i][0]; b = monom[i][1]
                if a == 0 and b != 0:
                    s+="E_6^{{ {0} }}".format(b)
                elif b ==0 and a != 0:
                    s+="E_4^{{ {0} }}".format(a)
                else:
                    s+="E_4^{{ {0} }}E_6^{{ {1} }}".format(a,b)
                info['explicit_formulas'] += s
            info['explicit_formulas'] += " \)"            
    cur_url = '?&level=' + str(level) + '&weight=' + str(weight) + '&character=' + str(character) + \
        '&label=' + str(label)
    if len(WNF.parent.hecke_orbits) > 1:
        for label_other in WNF.parent.hecke_orbits.keys():
            if(label_other != label):
                s = 'Modular form '
                if character:
                    s = s + str(level) + '.' + str(weight) + '.' + str(character) + str(label_other)
                else:
                    s = s + str(level) + '.' + str(weight) + str(label_other)
                url = url_for('emf.render_elliptic_modular_forms', level=level,
                              weight=weight, character=character, label=label_other)
                friends.append((s, url))

    s = 'L-Function '
    if character:
        s = s + str(level) + '.' + str(weight) + '.' + str(character) + str(label)
    else:
        s = s + str(level) + '.' + str(weight) + str(label)
    # url =
    # "/L/ModularForm/GL2/Q/holomorphic?level=%s&weight=%s&character=%s&label=%s&number=%s"
    # %(level,weight,character,label,0)
    url = '/L' + url_for(
        'emf.render_elliptic_modular_forms', level=level, weight=weight, character=character, label=label)
    if WNF.coefficient_field_degree > 1:
        for h in range(WNF.coefficient_field_degree):
            s0 = s + ".{0}".format(h)
            url0 = url + "{0}/".format(h)
            friends.append((s0, url0))
    else:
        friends.append((s, url))
    # if there is an elliptic curve over Q associated to self we also list that
    if WNF.weight == 2 and WNF.coefficient_field_degree == 1:
        llabel = str(level) + '.' + label
        s = 'Elliptic curve isogeny class ' + llabel
        url = '/EllipticCurve/Q/' + llabel
        friends.append((s, url))
    info['properties2'] = properties2
    info['friends'] = friends
    info['max_cn'] = WNF.max_cn()
    return info
开发者ID:am-github,项目名称:lmfdb,代码行数:104,代码来源:emf_render_web_newform.py

示例14: EtaQuotientMultiplier

# 需要导入模块: from sage.all import QQ [as 别名]
# 或者: from sage.all.QQ import denominator [as 别名]
class EtaQuotientMultiplier(MultiplierSystem):
    r"""
    Eta multiplier given by eta(Az)^{r}/eta(Bz)^s
    The weight should be r/2-s/2 mod 2.
    The group is Gamma0(lcm(A,B))
    """
    def __init__(self,A,B,r,s,k=None,number=0,ch=None,dual=False,version=1,**kwargs):
        r"""
        Initialize the Eta multiplier system: $\nu_{\eta}^{2(k+r)}$.
        INPUT:

        - G -- Group
        - ch -- character
        - dual -- if we have the dual (in this case conjugate)
        - weight -- Weight (recall that eta has weight 1/2 and eta**2k has weight k. If weight<>k we adjust the power accordingly.
        - number -- we consider eta^power (here power should be an integer so as not to change the weight...)

        EXAMPLE:
        
                
        """
        self._level=lcm(A,B)
        G = Gamma0(self._level)
        if k==None:
            k = (QQ(r)-QQ(s))/QQ(2)
        self._weight=QQ(k)
        if floor(self._weight-QQ(1)/QQ(2))==ceil(self._weight-QQ(1)/QQ(2)):
            self._half_integral_weight=1
        else:
            self._half_integral_weight=0
        MultiplierSystem.__init__(self,G,dimension=1,character=ch,dual=dual)
        number = number % 12
        if not is_even(number):
            raise ValueError,"Need to have v_eta^(2(k+r)) with r even!"
        self._arg_num = A
        self._arg_den = B
        self._exp_num = r
        self._exp_den = s
        self._pow=QQ((self._weight+number)) ## k+r
        self._k_den=self._pow.denominator()
        self._k_num=self._pow.numerator()
        self._K = CyclotomicField(12*self._k_den)
        self._z = self._K.gen()**self._k_num
        self._i = CyclotomicField(4).gen()
        self._fak = CyclotomicField(2*self._k_den).gen()**-self._k_num
        self._version = version
        self.is_consistent(k) # test consistency

    def __repr__(self):
        s="Quotient of Eta multipliers :  "
        s+="eta({0})^{1}/eta({2})^{3}".format(self._arg_num,self._exp_num,self._arg_den,self._exp_den)
        if self._character<>None and not self._character.is_trivial():
            s+=" and character "+str(self._character)
        s+=" with weight="+str(self._weight)
        return s

    def level(self):
        return self._level
        
    def order(self):
        return 12*self._k_den

    def z(self):
        return self._z

    def q_shift(self):
        r"""
        Gives the 'shift' at the cusp at infinity of the q-series.
        The 'true' q-expansion of the eta quotient is then q^shift*q_expansion
        """
        num =  self._arg_num*self._exp_num-self._arg_den*self._exp_den
        return QQ(num)/QQ(24)
    
    def q_expansion(self,n=20):
        r"""
        Give the q-expansion of the quotient.
        """
        var('q')
        et = qexp_eta(ZZ[['q']],n)
        etA= et.subs(q=q**self._arg_num).power_series(ZZ[['q']])
        etB= et.subs(q=q**self._arg_den).power_series(ZZ[['q']])
        res = etA**(self._exp_num)/etB**(self._exp_den)
        return res
    #def _action(self,A):
    #    return self._action(A)
        
    def _action(self,A):
        [a,b,c,d]=A
        if not c % self._level == 0 :
            raise ValueError,"Need A in {0}! Got: {1}".format(self.group,A)
        fak=1
        if c<0:
            a=-a; b=-b; c=-c;  d=-d; fak=-self._fak
            #fak = fak*(-1)**(self._exp_num-self._exp_den)
        arg1,v1 = eta_conjugated(a,b,c,d,self._arg_num)
        arg2,v2 = eta_conjugated(a,b,c,d,self._arg_den)
        res=self._z**(arg1*self._exp_num-arg2*self._exp_den)
        if v1<>1:
            res=res*v1**self._exp_num
        if v2<>1:
#.........这里部分代码省略.........
开发者ID:nilsskoruppa,项目名称:psage,代码行数:103,代码来源:multiplier_systems.py

示例15: set_info_for_web_newform

# 需要导入模块: from sage.all import QQ [as 别名]
# 或者: from sage.all.QQ import denominator [as 别名]

#.........这里部分代码省略.........
            info['CM_values'] = CM
    info['is_cm'] = WNF.is_cm
    if WNF.is_cm == 1:
        info['cm_field'] = "2.0.{0}.1".format(-WNF.cm_disc)
        info['cm_disc'] = WNF.cm_disc
        info['cm_field_knowl'] = nf_display_knowl(info['cm_field'], getDBConnection(), field_pretty(info['cm_field']))
        info['cm_field_url'] = url_for("number_fields.by_label", label=info["cm_field"])
    if WNF.is_cm is None or WNF.is_cm==-1:
        s = '- Unknown (insufficient data)<br>'
    elif WNF.is_cm == 1:
        s = 'Yes<br>'
    else:
        s = 'No<br>'
    properties2.append(('CM', s))
    alev = WNF.atkin_lehner_eigenvalues()
    info['atkinlehner'] = None
    if isinstance(alev,dict) and len(alev.keys())>0 and level != 1:
        s1 = " Atkin-Lehner eigenvalues "
        s2 = ""
        for Q in alev.keys():
            s2 += "\( \omega_{ %s } \) : %s <br>" % (Q, alev[Q])
        properties2.append((s1, s2))
        emf_logger.debug("properties={0}".format(properties2))
        # alev = WNF.atkin_lehner_eigenvalues_for_all_cusps() 
        # if isinstance(alev,dict) and len(alev.keys())>0:
        #     emf_logger.debug("alev={0}".format(alev))
        #     info['atkinlehner'] = list()
        #     for Q in alev.keys():
        #         s = "\(" + latex(c) + "\)"
        #         Q = alev[c][0]
        #         ev = alev[c][1]
        #         info['atkinlehner'].append([Q, c, ev])
    if(level == 1):
        poly = WNF.explicit_formulas.get('as_polynomial_in_E4_and_E6','')
        if poly != '':
            d,monom,coeffs = poly
            emf_logger.critical("poly={0}".format(poly))
            info['explicit_formulas'] = '\('
            for i in range(len(coeffs)):
                c = QQ(coeffs[i])
                s = ""
                if d>1 and i >0 and c>0:
                    s="+"
                if c<0:
                    s="-"
                if c.denominator()>1:
                    cc = "\\frac{{ {0} }}{{ {1} }}".format(abs(c.numerator()),c.denominator())
                else:
                    cc = str(abs(c))
                s += "{0} \cdot ".format(cc)
                a = monom[i][0]; b = monom[i][1]
                if a == 0 and b != 0:
                    s+="E_6^{{ {0} }}".format(b)
                elif b ==0 and a != 0:
                    s+="E_4^{{ {0} }}".format(a)
                else:
                    s+="E_4^{{ {0} }}E_6^{{ {1} }}".format(a,b)
                info['explicit_formulas'] += s
            info['explicit_formulas'] += " \)"            
    # cur_url = '?&level=' + str(level) + '&weight=' + str(weight) + '&character=' + str(character) + '&label=' + str(label) # never used
    if len(WNF.parent.hecke_orbits) > 1:
        for label_other in WNF.parent.hecke_orbits.keys():
            if(label_other != label):
                s = 'Modular form '
                if character:
                    s += newform_label(level,weight,character,label_other)
                else:
                    s += newform_label(level,weight,1,label_other)

                url = url_for('emf.render_elliptic_modular_forms', level=level,
                              weight=weight, character=character, label=label_other)
                friends.append((s, url))

    s = 'L-Function '
    if character:
        s += newform_label(level,weight,character,label)
    else:
        s += newform_label(level,weight,1,label)
    # url =
    # "/L/ModularForm/GL2/Q/holomorphic?level=%s&weight=%s&character=%s&label=%s&number=%s"
    # %(level,weight,character,label,0)
    url = '/L' + url_for(
        'emf.render_elliptic_modular_forms', level=level, weight=weight, character=character, label=label)
    if WNF.coefficient_field_degree > 1:
        for h in range(WNF.coefficient_field_degree):
            s0 = s + ".{0}".format(h)
            url0 = url + "{0}/".format(h)
            friends.append((s0, url0))
    else:
        friends.append((s, url))
    # if there is an elliptic curve over Q associated to self we also list that
    if WNF.weight == 2 and WNF.coefficient_field_degree == 1:
        llabel = str(level) + '.' + label
        s = 'Elliptic curve isogeny class ' + llabel
        url = '/EllipticCurve/Q/' + llabel
        friends.append((s, url))
    info['properties2'] = properties2
    info['friends'] = friends
    info['max_cn'] = WNF.max_available_prec()
    return info
开发者ID:jwj61,项目名称:lmfdb,代码行数:104,代码来源:emf_render_web_newform.py


注:本文中的sage.all.QQ.denominator方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。