当前位置: 首页>>代码示例>>Python>>正文


Python PolynomialRing.random_element方法代码示例

本文整理汇总了Python中sage.all.PolynomialRing.random_element方法的典型用法代码示例。如果您正苦于以下问题:Python PolynomialRing.random_element方法的具体用法?Python PolynomialRing.random_element怎么用?Python PolynomialRing.random_element使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.all.PolynomialRing的用法示例。


在下文中一共展示了PolynomialRing.random_element方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_karatsuba_multiplication

# 需要导入模块: from sage.all import PolynomialRing [as 别名]
# 或者: from sage.all.PolynomialRing import random_element [as 别名]
def test_karatsuba_multiplication(base_ring, maxdeg1, maxdeg2,
        ref_mul=lambda f, g: f._mul_generic(g), base_ring_random_elt_args=[],
        numtests=10, verbose=False):
    """
    Test univariate karatsuba multiplication against other multiplication algorithms.

    EXAMPLES:

    First check that random tests are reproducible::

        sage: import sage.rings.tests
        sage: sage.rings.tests.test_karatsuba_multiplication(ZZ, 6, 5, verbose=True, seed=42)
        test_karatsuba_multiplication: ring=Univariate Polynomial Ring in x over Integer Ring, threshold=2
          (2*x^6 - x^5 - x^4 - 3*x^3 + 4*x^2 + 4*x + 1)*(4*x^4 + x^3 - 2*x^2 - 20*x + 3)
          (16*x^2)*(x^2 - 41*x + 1)
          (-x + 1)*(x^2 + 2*x + 8)
          (-x^6 - x^4 - 8*x^3 - x^2 - 4*x + 3)*(-x^3 - x^2)
          (2*x^2 + x + 1)*(x^4 - x^3 + 3*x^2 - x)
          (-x^3 + x^2 + x + 1)*(4*x^2 + 76*x - 1)
          (6*x + 1)*(-5*x - 1)
          (-x^3 + 4*x^2 + x)*(-x^5 + 3*x^4 - 2*x + 5)
          (-x^5 + 4*x^4 + x^3 + 21*x^2 + x)*(14*x^3)
          (2*x + 1)*(12*x^3 - 12)

    Test Karatsuba multiplication of polynomials of small degree over some common rings::

        sage: for C in [QQ, ZZ[I], ZZ[I, sqrt(2)], GF(49, 'a'), MatrixSpace(GF(17), 3)]:
        ....:     sage.rings.tests.test_karatsuba_multiplication(C, 10, 10)

    Zero-tests over ``QQbar`` are currently very slow, so we test only very small examples::

        sage.rings.tests.test_karatsuba_multiplication(QQbar, 3, 3, numtests=2)

    Larger degrees (over ``ZZ``, using FLINT)::

        sage: sage.rings.tests.test_karatsuba_multiplication(ZZ, 1000, 1000, ref_mul=lambda f,g: f*g, base_ring_random_elt_args=[1000])

    Some more aggressive tests::

        sage: for C in [QQ, ZZ[I], ZZ[I, sqrt(2)], GF(49, 'a'), MatrixSpace(GF(17), 3)]:
        ....:     sage.rings.tests.test_karatsuba_multiplication(C, 10, 10) # long time
        sage: sage.rings.tests.test_karatsuba_multiplication(ZZ, 10000, 10000, ref_mul=lambda f,g: f*g, base_ring_random_elt_args=[100000])

    """
    from sage.all import randint, PolynomialRing
    threshold = randint(0, min(maxdeg1,maxdeg2))
    R = PolynomialRing(base_ring, 'x')
    if verbose:
        print "test_karatsuba_multiplication: ring={}, threshold={}".format(R, threshold)
    for i in range(numtests):
        f = R.random_element(randint(0, maxdeg1), *base_ring_random_elt_args)
        g = R.random_element(randint(0, maxdeg2), *base_ring_random_elt_args)
        if verbose:
            print "  ({})*({})".format(f, g)
        if ref_mul(f, g) -  f._mul_karatsuba(g, threshold) != 0:
            raise ValueError("Multiplication failed")
    return
开发者ID:DrXyzzy,项目名称:sage,代码行数:59,代码来源:tests.py


注:本文中的sage.all.PolynomialRing.random_element方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。