当前位置: 首页>>代码示例>>Python>>正文


Python utilities.get_thousand_separator函数代码示例

本文整理汇总了Python中safe.common.utilities.get_thousand_separator函数的典型用法代码示例。如果您正苦于以下问题:Python get_thousand_separator函数的具体用法?Python get_thousand_separator怎么用?Python get_thousand_separator使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了get_thousand_separator函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_separator

 def test_separator(self):
     """Test decimal and thousand separator
     """
     os.environ['LANG'] = 'en'
     assert ',' == get_thousand_separator()
     assert '.' == get_decimal_separator()
     os.environ['LANG'] = 'id'
     assert '.' == get_thousand_separator()
     assert ',' == get_decimal_separator()
开发者ID:assefay,项目名称:inasafe,代码行数:9,代码来源:test_utilities.py

示例2: run


#.........这里部分代码省略.........
        interpolated_layer = assign_hazard_values_to_exposure_data(
            self.hazard.layer, self.exposure.layer)

        # Extract relevant exposure data
        attribute_names = interpolated_layer.get_attribute_names()
        features = interpolated_layer.get_data()

        # Hazard zone categories from hazard layer
        hazard_zone_categories = list(
            set(self.hazard.layer.get_data(self.hazard_class_attribute)))

        self.buildings = {}
        self.affected_buildings = OrderedDict()
        for hazard_category in hazard_zone_categories:
            self.affected_buildings[hazard_category] = {}

        for i in range(len(features)):
            hazard_value = features[i][self.hazard_class_attribute]
            if not hazard_value:
                hazard_value = self._not_affected_value
            features[i][self.target_field] = hazard_value
            if (self.exposure_class_attribute and
                    self.exposure_class_attribute in attribute_names):
                usage = features[i][self.exposure_class_attribute]
            else:
                usage = get_osm_building_usage(attribute_names, features[i])
            if usage in [None, 'NULL', 'null', 'Null', 0]:
                usage = tr('Unknown')
            if usage not in self.buildings:
                self.buildings[usage] = 0
                for category in self.affected_buildings.keys():
                    self.affected_buildings[category][
                        usage] = OrderedDict([
                            (tr('Buildings Affected'), 0)])
            self.buildings[usage] += 1
            if hazard_value in self.affected_buildings.keys():
                self.affected_buildings[hazard_value][usage][
                    tr('Buildings Affected')] += 1

        # Lump small entries and 'unknown' into 'other' category
        self._consolidate_to_other()

        # Generate simple impact report
        impact_summary = impact_table = self.generate_html_report()
        category_names = hazard_zone_categories
        category_names.append(self._not_affected_value)

        # Create style
        colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00',
                   '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        colours = colours[::-1]  # flip

        colours = colours[:len(category_names)]

        style_classes = []

        i = 0
        for category_name in category_names:
            style_class = dict()
            style_class['label'] = tr(category_name)
            style_class['transparency'] = 0
            style_class['value'] = category_name
            style_class['size'] = 1

            if i >= len(category_names):
                i = len(category_names) - 1
            style_class['colour'] = colours[i]
            i += 1

            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=self.target_field,
                          style_classes=style_classes,
                          style_type='categorizedSymbol')

        # For printing map purpose
        map_title = tr('Buildings affected by volcanic hazard zone')
        legend_title = tr('Building count')
        legend_units = tr('(building)')
        legend_notes = tr('Thousand separator is represented by %s' %
                          get_thousand_separator())

        # Create vector layer and return
        impact_layer = Vector(
            data=features,
            projection=interpolated_layer.get_projection(),
            geometry=interpolated_layer.get_geometry(),
            name=tr('Buildings affected by volcanic hazard zone'),
            keywords={'impact_summary': impact_summary,
                      'impact_table': impact_table,
                      'target_field': self.target_field,
                      'map_title': map_title,
                      'legend_notes': legend_notes,
                      'legend_units': legend_units,
                      'legend_title': legend_title},
            style_info=style_info)

        self._impact = impact_layer
        return impact_layer
开发者ID:tomkralidis,项目名称:inasafe,代码行数:101,代码来源:impact_function.py

示例3: run


#.........这里部分代码省略.........
        for attr in P.get_data():

            # Update building count for associated polygon
            poly_id = attr["polygon_id"]
            if poly_id is not None:
                new_attributes[poly_id][self.target_field] += 1

                # Update building count for each category
                cat = new_attributes[poly_id][category_title]
                categories[cat] += 1

        # Count totals
        total = len(my_exposure)

        # Generate simple impact report
        blank_cell = ""
        table_body = [
            question,
            TableRow([tr("Volcanos considered"), "%s" % volcano_names, blank_cell], header=True),
            TableRow([tr("Distance [km]"), tr("Total"), tr("Cumulative")], header=True),
        ]

        cum = 0
        for name in category_names:
            # prevent key error
            count = categories.get(name, 0)
            cum += count
            if is_point_data:
                name = int(name) / 1000
            table_body.append(TableRow([name, format_int(count), format_int(cum)]))

        table_body.append(TableRow(tr("Map shows buildings affected in " "each of volcano hazard polygons.")))
        impact_table = Table(table_body).toNewlineFreeString()

        # Extend impact report for on-screen display
        table_body.extend(
            [
                TableRow(tr("Notes"), header=True),
                tr("Total number of buildings %s in the viewable " "area") % format_int(total),
                tr("Only buildings available in OpenStreetMap " "are considered."),
            ]
        )

        impact_summary = Table(table_body).toNewlineFreeString()
        building_counts = [x[self.target_field] for x in new_attributes]

        if max(building_counts) == 0 == min(building_counts):
            table_body = [
                question,
                TableRow([tr("Number of buildings affected"), "%s" % format_int(cum), blank_cell], header=True),
            ]
            my_message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(my_message)

        # Create style
        colours = ["#FFFFFF", "#38A800", "#79C900", "#CEED00", "#FFCC00", "#FF6600", "#FF0000", "#7A0000"]
        classes = create_classes(building_counts, len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class["label"] = create_label(interval_classes[i])
            if i == 0:
                transparency = 100
                style_class["min"] = 0
            else:
                transparency = 30
                style_class["min"] = classes[i - 1]
            style_class["transparency"] = transparency
            style_class["colour"] = colours[i]
            style_class["max"] = classes[i]
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=self.target_field, style_classes=style_classes, style_type="graduatedSymbol")

        # For printing map purpose
        map_title = tr("Buildings affected by volcanic hazard zone")
        legend_notes = tr("Thousand separator is represented by %s" % get_thousand_separator())
        legend_units = tr("(building)")
        legend_title = tr("Building count")

        # Create vector layer and return
        V = Vector(
            data=new_attributes,
            projection=my_hazard.get_projection(),
            geometry=my_hazard.get_geometry(as_geometry_objects=True),
            name=tr("Buildings affected by volcanic hazard zone"),
            keywords={
                "impact_summary": impact_summary,
                "impact_table": impact_table,
                "target_field": self.target_field,
                "map_title": map_title,
                "legend_notes": legend_notes,
                "legend_units": legend_units,
                "legend_title": legend_title,
            },
            style_info=style_info,
        )
        return V
开发者ID:vdeparday,项目名称:inasafe,代码行数:101,代码来源:volcano_building_impact.py

示例4: run


#.........这里部分代码省略.........
            numpy.nan,
            affected_population)
        affected_population = numpy.where(
            numpy.isnan(hazard_data),
            numpy.nan,
            affected_population)

        # Count totals
        self.total_population = int(numpy.nansum(population))
        self.affected_population[
            tr('Population in High hazard class areas')] = int(
                numpy.nansum(high_hazard_population))
        self.affected_population[
            tr('Population in Medium hazard class areas')] = int(
                numpy.nansum(medium_hazard_population))
        self.affected_population[
            tr('Population in Low hazard class areas')] = int(
                numpy.nansum(low_hazard_population))
        self.unaffected_population = (
            self.total_population - self.total_affected_population)

        # check for zero impact
        if self.total_affected_population == 0:
            message = no_population_impact_message(self.question)
            raise ZeroImpactException(message)

        self.minimum_needs = [
            parameter.serialize() for parameter in
            self.parameters['minimum needs']
        ]

        total_needs = self.total_needs
        impact_table = impact_summary = self.html_report()

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00',
            '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(affected_population.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []

        for i in xrange(len(colours)):
            style_class = dict()
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])
            style_class['label'] = label
            style_class['quantity'] = classes[i]
            if i == 0:
                transparency = 100
            else:
                transparency = 0
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(
            target_field=None,
            style_classes=style_classes,
            style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('Number of people affected in each class')
        legend_title = tr('Number of People')
        legend_units = tr('(people per cell)')
        legend_notes = tr(
            'Thousand separator is represented by %s' %
            get_thousand_separator())

        # Create raster object and return
        raster_layer = Raster(
            data=affected_population,
            projection=self.exposure.layer.get_projection(),
            geotransform=self.exposure.layer.get_geotransform(),
            name=tr('People that might %s') % (
                self.impact_function_manager
                .get_function_title(self).lower()),
            keywords={
                'impact_summary': impact_summary,
                'impact_table': impact_table,
                'map_title': map_title,
                'legend_notes': legend_notes,
                'legend_units': legend_units,
                'legend_title': legend_title,
                'total_needs': total_needs},
            style_info=style_info)
        self._impact = raster_layer
        return raster_layer
开发者ID:Mloweedgar,项目名称:inasafe,代码行数:101,代码来源:impact_function.py

示例5: run


#.........这里部分代码省略.........

                # Update building count for each category
                category = new_data_table[poly_id][category_title]
                categories[category] += 1

        # Count totals
        total = len(exposure_layer)

        # Generate simple impact report
        blank_cell = ''
        table_body = [question,
                      TableRow([tr('Volcanoes considered'),
                                '%s' % volcano_names, blank_cell],
                               header=True),
                      TableRow([tr('Distance [km]'), tr('Total'),
                                tr('Cumulative')],
                               header=True)]

        cumulative = 0
        for name in category_names:
            # prevent key error
            count = categories.get(name, 0)
            cumulative += count
            if is_point_data:
                name = int(name) / 1000
            table_body.append(TableRow([name, format_int(count),
                                        format_int(cumulative)]))

        table_body.append(TableRow(tr('Map shows buildings affected in '
                                      'each of volcano hazard polygons.')))
        impact_table = Table(table_body).toNewlineFreeString()

        # Extend impact report for on-screen display
        table_body.extend([TableRow(tr('Notes'), header=True),
                           tr('Total number of buildings %s in the viewable '
                              'area') % format_int(total),
                           tr('Only buildings available in OpenStreetMap '
                              'are considered.')])

        impact_summary = Table(table_body).toNewlineFreeString()
        building_counts = [x[self.target_field] for x in new_data_table]

        if max(building_counts) == 0 == min(building_counts):
            table_body = [
                question,
                TableRow([tr('Number of buildings affected'),
                          '%s' % format_int(cumulative), blank_cell],
                         header=True)]
            my_message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(my_message)

        # Create style
        colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00',
                   '#FFCC00', '#FF6600', '#FF0000', '#7A0000']

        # Create Classes
        classes = create_classes(building_counts, len(colours))
        # Create Interval Classes
        interval_classes = humanize_class(classes)

        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 0:
                style_class['min'] = 0
            else:
                style_class['min'] = classes[i - 1]
            style_class['transparency'] = 30
            style_class['colour'] = colours[i]
            style_class['max'] = classes[i]
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=self.target_field,
                          style_classes=style_classes,
                          style_type='graduatedSymbol')

        # For printing map purpose
        map_title = tr('Buildings affected by volcanic hazard zone')
        legend_notes = tr('Thousand separator is represented by %s' %
                          get_thousand_separator())
        legend_units = tr('(building)')
        legend_title = tr('Building count')

        # Create vector layer and return
        impact_layer = Vector(
            data=new_data_table,
            projection=hazard_layer.get_projection(),
            geometry=hazard_layer.get_geometry(as_geometry_objects=True),
            name=tr('Buildings affected by volcanic hazard zone'),
            keywords={'impact_summary': impact_summary,
                      'impact_table': impact_table,
                      'target_field': self.target_field,
                      'map_title': map_title,
                      'legend_notes': legend_notes,
                      'legend_units': legend_units,
                      'legend_title': legend_title},
            style_info=style_info)
        return impact_layer
开发者ID:D2KG,项目名称:FLOOgin,代码行数:101,代码来源:volcano_building_impact.py

示例6: as_dict

    def as_dict():
        """Return metadata as a dictionary.

        This is a static method. You can use it to get the metadata in
        dictionary format for an impact function.

        :returns: A dictionary representing all the metadata for the
            concrete impact function.
        :rtype: dict
        """
        dict_meta = {
            'id': 'FloodEvacuationRasterHazardFunction',
            'name': tr('Raster flood on population'),
            'impact': tr('Need evacuation'),
            'title': tr('Need evacuation'),
            'function_type': 'old-style',
            'author': 'AIFDR',
            'date_implemented': 'N/A',
            'overview': tr(
                'To assess the impacts of flood inundation in raster '
                'format on population.'),
            'detailed_description': tr(
                'The population subject to inundation exceeding a '
                'threshold (default 1m) is calculated and returned as a '
                'raster layer. In addition the total number of affected '
                'people and the required needs based on the user '
                'defined minimum needs are reported. The threshold can be '
                'changed and even contain multiple numbers in which case '
                'evacuation and needs are calculated using the largest number '
                'with population breakdowns provided for the smaller numbers. '
                'The population raster is resampled to the resolution of the '
                'hazard raster and is rescaled so that the resampled '
                'population counts reflect estimates of population count '
                'per resampled cell. The resulting impact layer has the '
                'same resolution and reflects population count per cell '
                'which are affected by inundation.'),
            'hazard_input': tr(
                'A hazard raster layer where each cell represents flood '
                'depth (in meters).'),
            'exposure_input': tr(
                'An exposure raster layer where each cell represent '
                'population count.'),
            'output': tr(
                'Raster layer contains population affected and the minimum '
                'needs based on number of the population affected.'),
            'actions': tr(
                'Provide details about how many people would likely need '
                'to be evacuated, where they are located and what '
                'resources would be required to support them.'),
            'limitations': [
                tr('The default threshold of 1 meter was selected based '
                   'on consensus, not hard evidence.')
            ],
            'citations': [
                {
                    'text': None,
                    'link': None
                }
            ],
            'map_title': tr('People in need of evacuation'),
            'legend_title': tr('Population Count'),
            'legend_units': tr('(people per cell)'),
            'legend_notes': tr(
                'Thousand separator is represented by %s' %
                get_thousand_separator()),
            'layer_name': tr('Population which need evacuation'),
            'layer_requirements': {
                'hazard': {
                    'layer_mode': layer_mode_continuous,
                    'layer_geometries': [layer_geometry_raster],
                    'hazard_categories': [
                        hazard_category_single_event,
                        hazard_category_multiple_event
                    ],
                    'hazard_types': [hazard_flood],
                    'continuous_hazard_units': [unit_feet, unit_metres],
                    'vector_hazard_classifications': [],
                    'raster_hazard_classifications': [],
                    'additional_keywords': []
                },
                'exposure': {
                    'layer_mode': layer_mode_continuous,
                    'layer_geometries': [layer_geometry_raster],
                    'exposure_types': [exposure_population],
                    'exposure_units': [count_exposure_unit],
                    'exposure_class_fields': [],
                    'additional_keywords': []
                }
            },
            'parameters': OrderedDict([
                ('thresholds', threshold()),
                ('postprocessors', OrderedDict([
                    ('Gender', default_gender_postprocessor()),
                    ('Age', age_postprocessor()),
                    ('MinimumNeeds', minimum_needs_selector()),
                ])),
                ('minimum needs', default_minimum_needs())
            ])
        }
        return dict_meta
开发者ID:easmetz,项目名称:inasafe,代码行数:100,代码来源:metadata_definitions.py

示例7: run


#.........这里部分代码省略.........
                    '%s' % format_int(
                        population_rounding(total_affected_population)),
                    blank_cell],
                header=True)]

        for hazard_zone in self.hazard_zones:
            table_body.append(
                TableRow(
                    [
                        hazard_zone,
                        format_int(
                            population_rounding(
                                affected_population[hazard_zone]))
                    ]))

        table_body.extend([
            TableRow(tr(
                'Map shows the number of people impacted in each of the '
                'hazard zones.'))])

        impact_table = Table(table_body).toNewlineFreeString()

        # Extend impact report for on-screen display
        table_body.extend(
            [TableRow(tr('Notes'), header=True),
             tr('Total population: %s in the exposure layer') % format_int(
                 total_population),
             tr('"nodata" values in the exposure layer are treated as 0 '
                'when counting the affected or total population')]
        )

        impact_summary = Table(table_body).toNewlineFreeString()

        # Create style
        colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00',
                   '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(
            covered_exposure_layer.get_data().flat[:], len(colours))
        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])

            if i == 0:
                transparency = 100
            else:
                transparency = 0

            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['colour'] = colours[i]
            style_class['transparency'] = transparency
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(
            target_field=None,
            style_classes=style_classes,
            style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('People impacted by each hazard zone')
        legend_notes = tr('Thousand separator is represented by  %s' %
                          get_thousand_separator())
        legend_units = tr('(people per cell)')
        legend_title = tr('Population')

        # Create vector layer and return
        impact_layer = Raster(
            data=covered_exposure_layer.get_data(),
            projection=covered_exposure_layer.get_projection(),
            geotransform=covered_exposure_layer.get_geotransform(),
            name=tr('People impacted by each hazard zone'),
            keywords={'impact_summary': impact_summary,
                      'impact_table': impact_table,
                      'target_field': self.target_field,
                      'map_title': map_title,
                      'legend_notes': legend_notes,
                      'legend_units': legend_units,
                      'legend_title': legend_title},
            style_info=style_info)

        self._impact = impact_layer
        return impact_layer
开发者ID:Charlotte-Morgan,项目名称:inasafe,代码行数:101,代码来源:impact_function.py

示例8: run


#.........这里部分代码省略.........
            if not numpy.isnan(population):
                population = float(population)
                # Update population count for this hazard zone
                hazard_zone = row[self.hazard_class_attribute]
                self.affected_population[hazard_zone] += population

        # Count total population from exposure layer
        self.total_population = int(
            numpy.nansum(self.exposure.layer.get_data()))

        # Count total affected population
        total_affected_population = self.total_affected_population
        self.unaffected_population = (
            self.total_population - total_affected_population)

        self.minimum_needs = [
            parameter.serialize() for parameter in
            filter_needs_parameters(self.parameters['minimum needs'])
        ]

        # check for zero impact
        if total_affected_population == 0:
            table_body = [
                self.question,
                TableRow(
                    [tr('People impacted'),
                     '%s' % format_int(total_affected_population)],
                    header=True)]
            message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(message)

        impact_table = impact_summary = self.generate_html_report()

        # Create style
        colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00',
                   '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(
            covered_exposure_layer.get_data().flat[:], len(colours))
        interval_classes = humanize_class(classes)
        # Define style info for output polygons showing population counts
        style_classes = []
        for i in xrange(len(colours)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])

            if i == 0:
                transparency = 100
            else:
                transparency = 0

            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['colour'] = colours[i]
            style_class['transparency'] = transparency
            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(
            target_field=None,
            style_classes=style_classes,
            style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('People impacted by each hazard zone')
        legend_title = tr('Population')
        legend_units = tr('(people per cell)')
        legend_notes = tr('Thousand separator is represented by  %s' %
                          get_thousand_separator())

        # Create vector layer and return
        impact_layer = Raster(
            data=covered_exposure_layer.get_data(),
            projection=covered_exposure_layer.get_projection(),
            geotransform=covered_exposure_layer.get_geotransform(),
            name=tr('People impacted by each hazard zone'),
            keywords={'impact_summary': impact_summary,
                      'impact_table': impact_table,
                      'target_field': self.target_field,
                      'map_title': map_title,
                      'legend_notes': legend_notes,
                      'legend_units': legend_units,
                      'legend_title': legend_title},
            style_info=style_info)

        self._impact = impact_layer
        return impact_layer
开发者ID:tomkralidis,项目名称:inasafe,代码行数:101,代码来源:impact_function.py

示例9: run


#.........这里部分代码省略.........
        table_body.append(TableRow(tr('Do we have enough relief items?')))
        table_body.append(TableRow(tr('If yes, where are they located and how '
                                      'will we distribute them?')))
        table_body.append(TableRow(tr(
            'If no, where can we obtain additional relief items from and how '
            'will we transport them to here?')))

        # Extend impact report for on-screen display
        table_body.extend([
            TableRow(tr('Notes'), header=True),
            tr('Total population: %s') % format_int(total),
            tr('People need evacuation if tsunami levels exceed %(eps).1f m') %
            {'eps': thresholds[-1]},
            tr('Minimum needs are defined in BNPB regulation 7/2008'),
            tr('All values are rounded up to the nearest integer in order to '
               'avoid representing human lives as fractions.')])

        if len(counts) > 1:
            table_body.append(TableRow(tr('Detailed breakdown'), header=True))

            for i, val in enumerate(counts[:-1]):
                s = (tr('People in %(lo).1f m to %(hi).1f m of water: %(val)i')
                     % {'lo': thresholds[i],
                        'hi': thresholds[i + 1],
                        'val': format_int(val[0])})
                table_body.append(TableRow(s))

        # Result
        impact_summary = Table(table_body).toNewlineFreeString()
        impact_table = impact_summary

        # check for zero impact
        if numpy.nanmax(impact) == 0 == numpy.nanmin(impact):
            table_body = [
                question,
                TableRow([(tr('People in %.1f m of water') % thresholds[-1]),
                          '%s' % format_int(evacuated)],
                         header=True)]
            my_message = Table(table_body).toNewlineFreeString()
            raise ZeroImpactException(my_message)

        # Create style
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00',
            '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(impact.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []

        for i in xrange(len(colours)):
            style_class = dict()
            if i == 1:
                label = create_label(interval_classes[i], 'Low')
            elif i == 4:
                label = create_label(interval_classes[i], 'Medium')
            elif i == 7:
                label = create_label(interval_classes[i], 'High')
            else:
                label = create_label(interval_classes[i])
            style_class['label'] = label
            style_class['quantity'] = classes[i]
            if i == 0:
                transparency = 100
            else:
                transparency = 0
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(
            target_field=None,
            style_classes=style_classes,
            style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('People in need of evacuation')
        legend_notes = tr(
            'Thousand separator is represented by %s' %
            get_thousand_separator())
        legend_units = tr('(people per cell)')
        legend_title = tr('Population')

        # Create raster object and return
        raster = Raster(
            impact,
            projection=hazard_layer.get_projection(),
            geotransform=hazard_layer.get_geotransform(),
            name=tr('Population which %s') % (
                get_function_title(self).lower()),
            keywords={
                'impact_summary': impact_summary,
                'impact_table': impact_table,
                'map_title': map_title,
                'legend_notes': legend_notes,
                'legend_units': legend_units,
                'legend_title': legend_title,
                'evacuated': evacuated,
                'total_needs': total_needs},
            style_info=style_info)
        return raster
开发者ID:cccs-ip,项目名称:inasafe,代码行数:101,代码来源:tsunami_population_evacuation_raster_hazard.py

示例10: run


#.........这里部分代码省略.........
            hazard_value = get_key_for_value(
                    features[i][self.hazard_class_attribute],
                    self.hazard_class_mapping)
            if not hazard_value:
                hazard_value = self._not_affected_value
            features[i][self.target_field] = get_string(hazard_value)

            if (self.exposure_class_attribute and
                    self.exposure_class_attribute in attribute_names):
                usage = features[i][self.exposure_class_attribute]
            else:
                usage = get_osm_building_usage(attribute_names, features[i])

            if usage in [None, 'NULL', 'null', 'Null', 0]:
                usage = tr('Unknown')

            if usage not in self.buildings:
                self.buildings[usage] = 0
                for category in self.affected_buildings.keys():
                    self.affected_buildings[category][
                        usage] = OrderedDict([
                            (tr('Buildings Affected'), 0)])

            self.buildings[usage] += 1
            if hazard_value in self.affected_buildings.keys():
                self.affected_buildings[hazard_value][usage][
                    tr('Buildings Affected')] += 1

        # Lump small entries and 'unknown' into 'other' category
        # Building threshold #2468
        postprocessors = self.parameters['postprocessors']
        building_postprocessors = postprocessors['BuildingType'][0]
        self.building_report_threshold = building_postprocessors.value[0].value
        self._consolidate_to_other()

        # Generate simple impact report
        impact_summary = impact_table = self.html_report()

        # Create style
        colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00',
                   '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        colours = colours[::-1]  # flip

        colours = colours[:len(self.affected_buildings.keys())]

        style_classes = []

        i = 0
        for category_name in self.affected_buildings.keys():
            style_class = dict()
            style_class['label'] = tr(category_name)
            style_class['transparency'] = 0
            style_class['value'] = category_name
            style_class['size'] = 1

            if i >= len(self.affected_buildings.keys()):
                i = len(self.affected_buildings.keys()) - 1
            style_class['colour'] = colours[i]
            i += 1

            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=self.target_field,
                          style_classes=style_classes,
                          style_type='categorizedSymbol')

        # For printing map purpose
        map_title = tr('Buildings affected by volcanic hazard zone')
        legend_title = tr('Building count')
        legend_units = tr('(building)')
        legend_notes = tr('Thousand separator is represented by %s' %
                          get_thousand_separator())

        extra_keywords = {
            'impact_summary': impact_summary,
            'impact_table': impact_table,
            'target_field': self.target_field,
            'map_title': map_title,
            'legend_notes': legend_notes,
            'legend_units': legend_units,
            'legend_title': legend_title
        }

        self.set_if_provenance()

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        # Create vector layer and return
        impact_layer = Vector(
            data=features,
            projection=interpolated_layer.get_projection(),
            geometry=interpolated_layer.get_geometry(),
            name=tr('Buildings affected by volcanic hazard zone'),
            keywords=impact_layer_keywords,
            style_info=style_info
        )

        self._impact = impact_layer
        return impact_layer
开发者ID:codeforresilience,项目名称:inasafe,代码行数:101,代码来源:impact_function.py

示例11: run


#.........这里部分代码省略.........
                        building_usage]
                    row.append(format_int(building_sub_sum))
                    building_sum += building_sub_sum

                row.append(format_int(building_sum))
                table_body.append(row)

            else:
                for category_name in category_names:
                    if category_name in other_sum.keys():
                        other_sum[category_name] += building_per_category[
                            category_name][building_usage]
                    else:
                        other_sum[category_name] = building_per_category[
                            category_name][building_usage]

        # Adding others building type to the report.
        other_row = [tr('Other')]
        other_building_total = 0
        for category_name in category_names:
            other_building_sum = other_sum[category_name]
            other_row.append(format_int(other_building_sum))
            other_building_total += other_building_sum

        other_row.append(format_int(other_building_total))
        table_body.append(other_row)

        all_row = [tr('Total')]
        all_row += [format_int(building_per_category[category_name]['total'])
                    for category_name in category_names]
        total = sum([building_per_category[category_name]['total'] for
                     category_name in category_names])
        all_row += [format_int(total)]

        table_body.append(TableRow(all_row, header=True))

        table_body += [TableRow(tr('Map shows buildings affected in each of '
                                   'volcano hazard polygons.'))]

        impact_table = Table(table_body).toNewlineFreeString()
        impact_summary = impact_table

        # Extend impact report for on-screen display
        table_body.extend([TableRow(tr('Notes'), header=True),
                           tr('Total number of buildings %s in the viewable '
                              'area') % format_int(total),
                           tr('Only buildings available in OpenStreetMap '
                              'are considered.')])

        # Create style
        colours = ['#FFFFFF', '#38A800', '#79C900', '#CEED00',
                   '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        colours = colours[::-1]  # flip

        colours = colours[:len(category_names)]

        style_classes = []

        i = 0
        for category_name in category_names:
            style_class = dict()
            style_class['label'] = tr(category_name)
            style_class['transparency'] = 0
            style_class['value'] = category_name
            style_class['size'] = 1

            if i >= len(category_names):
                i = len(category_names) - 1
            style_class['colour'] = colours[i]
            i += 1

            style_classes.append(style_class)

        # Override style info with new classes and name
        style_info = dict(target_field=target_field,
                          style_classes=style_classes,
                          style_type='categorizedSymbol')

        # For printing map purpose
        map_title = tr('Buildings affected by volcanic hazard zone')
        legend_notes = tr('Thousand separator is represented by %s' %
                          get_thousand_separator())
        legend_units = tr('(building)')
        legend_title = tr('Building count')

        # Create vector layer and return
        impact_layer = Vector(
            data=attributes,
            projection=interpolated_layer.get_projection(),
            geometry=interpolated_layer.get_geometry(as_geometry_objects=True),
            name=tr('Buildings affected by volcanic hazard zone'),
            keywords={'impact_summary': impact_summary,
                      'impact_table': impact_table,
                      'target_field': target_field,
                      'map_title': map_title,
                      'legend_notes': legend_notes,
                      'legend_units': legend_units,
                      'legend_title': legend_title},
            style_info=style_info)
        return impact_layer
开发者ID:severinmenard,项目名称:inasafe,代码行数:101,代码来源:volcano_building_impact.py

示例12: run


#.........这里部分代码省略.........
            exposure_data, 0)
        impacted_exposure = low_exposure + medium_exposure + high_exposure

        # Count totals
        self.total_population = int(numpy.nansum(exposure_data))
        self.affected_population[
            tr('Population in high hazard areas')] = int(
                numpy.nansum(high_exposure))
        self.affected_population[
            tr('Population in medium hazard areas')] = int(
                numpy.nansum(medium_exposure))
        self.affected_population[
            tr('Population in low hazard areas')] = int(
                numpy.nansum(low_exposure))
        self.unaffected_population = (
            self.total_population - self.total_affected_population)

        # check for zero impact
        if self.total_affected_population == 0:
            message = no_population_impact_message(self.question)
            raise ZeroImpactException(message)

        # Don't show digits less than a 1000
        self.minimum_needs = [
            parameter.serialize() for parameter in
            filter_needs_parameters(self.parameters['minimum needs'])
        ]
        total_needs = self.total_needs

        impact_table = impact_summary = self.html_report()

        # Style for impact layer
        colours = [
            '#FFFFFF', '#38A800', '#79C900', '#CEED00',
            '#FFCC00', '#FF6600', '#FF0000', '#7A0000']
        classes = create_classes(impacted_exposure.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []

        for i in xrange(len(colours)):
            style_class = dict()
            if i == 1:
                label = create_label(
                    interval_classes[i],
                    tr('Low Population [%i people/cell]' % classes[i]))
            elif i == 4:
                label = create_label(
                    interval_classes[i],
                    tr('Medium Population [%i people/cell]' % classes[i]))
            elif i == 7:
                label = create_label(
                    interval_classes[i],
                    tr('High Population [%i people/cell]' % classes[i]))
            else:
                label = create_label(interval_classes[i])
            style_class['label'] = label
            style_class['quantity'] = classes[i]
            style_class['transparency'] = 0
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(
            target_field=None,
            style_classes=style_classes,
            style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('People in each hazard areas (low, medium, high)')
        legend_title = tr('Number of People')
        legend_units = tr('(people per cell)')
        legend_notes = tr(
            'Thousand separator is represented by %s' %
            get_thousand_separator())

        extra_keywords = {
            'impact_summary': impact_summary,
            'impact_table': impact_table,
            'map_title': map_title,
            'legend_notes': legend_notes,
            'legend_units': legend_units,
            'legend_title': legend_title,
            'total_needs': total_needs
        }

        self.set_if_provenance()

        impact_layer_keywords = self.generate_impact_keywords(extra_keywords)

        # Create raster object and return
        raster_layer = Raster(
            data=impacted_exposure,
            projection=self.hazard.layer.get_projection(),
            geotransform=self.hazard.layer.get_geotransform(),
            name=tr('Population might %s') % (
                self.impact_function_manager.
                get_function_title(self).lower()),
            keywords=impact_layer_keywords,
            style_info=style_info)
        self._impact = raster_layer
        return raster_layer
开发者ID:felix-yew,项目名称:inasafe,代码行数:101,代码来源:impact_function.py

示例13: run


#.........这里部分代码省略.........
            # Calculate expected number of displaced people per level
            displacements = displacement_rate[mmi] * (exposed - fatalities)

            # Adjust displaced people to disregard fatalities.
            # Set to zero if there are more fatalities than displaced.
            # displacements = numpy.where(
            #    displacements > fatalities, displacements - fatalities, 0)

            # Sum up numbers for map
            # We need to use matrices here and not just numbers #2235
            mask += mmi_matches * (1 - self.fatality_rate(mmi))   # Displaced

            # Generate text with result for this study
            # This is what is used in the real time system exposure table
            number_of_exposed[mmi] = exposed
            number_of_displaced[mmi] = displacements
            # noinspection PyUnresolvedReferences
            number_of_fatalities[mmi] = fatalities

        # Total statistics
        self.total_population = numpy.nansum(number_of_exposed.values())
        self.total_fatalities = numpy.nansum(number_of_fatalities.values())
        total_displaced = numpy.nansum(number_of_displaced.values())

        # As per email discussion with Ole, Trevor, Hadi, total fatalities < 50
        # will be rounded down to 0 - Tim
        # Needs to revisit but keep it alive for the time being - Hyeuk, Jono
        if self.total_fatalities < 50:
            self.total_fatalities = 0

        affected_population = self.affected_population
        affected_population[tr('Number of fatalities')] = self.total_fatalities
        affected_population[
            tr('Number of people displaced')] = total_displaced
        self.unaffected_population = (
            self.total_population - total_displaced - self.total_fatalities)
        self._evacuation_category = tr('Number of people displaced')

        self.minimum_needs = [
            parameter.serialize() for parameter in
            filter_needs_parameters(self.parameters['minimum needs'])
        ]
        total_needs = self.total_needs

        # Result
        impact_summary = self.generate_html_report()
        impact_table = impact_summary

        # Create style
        colours = ['#EEFFEE', '#FFFF7F', '#E15500', '#E4001B', '#730000']
        classes = create_classes(mask.flat[:], len(colours))
        interval_classes = humanize_class(classes)
        style_classes = []
        for i in xrange(len(interval_classes)):
            style_class = dict()
            style_class['label'] = create_label(interval_classes[i])
            style_class['quantity'] = classes[i]
            if i == 0:
                transparency = 100
            else:
                transparency = 30
            style_class['transparency'] = transparency
            style_class['colour'] = colours[i]
            style_classes.append(style_class)

        style_info = dict(target_field=None,
                          style_classes=style_classes,
                          style_type='rasterStyle')

        # For printing map purpose
        map_title = tr('Earthquake impact to population')
        legend_title = tr('Population Count')
        legend_units = tr('(people per cell)')
        legend_notes = tr('Thousand separator is represented by %s' %
                          get_thousand_separator())

        # Create raster object and return
        raster = Raster(
            mask,
            projection=self.exposure.layer.get_projection(),
            geotransform=self.exposure.layer.get_geotransform(),
            keywords={
                'impact_summary': impact_summary,
                'exposed_per_mmi': number_of_exposed,
                'total_population': self.total_population,
                'total_fatalities': population_rounding(self.total_fatalities),
                'total_fatalities_raw': self.total_fatalities,
                'fatalities_per_mmi': number_of_fatalities,
                'total_displaced': population_rounding(total_displaced),
                'displaced_per_mmi': number_of_displaced,
                'impact_table': impact_table,
                'map_title': map_title,
                'legend_notes': legend_notes,
                'legend_units': legend_units,
                'legend_title': legend_title,
                'total_needs': total_needs},
            name=tr('Estimated displaced population per cell'),
            style_info=style_info)
        self._impact = raster
        return raster
开发者ID:tomkralidis,项目名称:inasafe,代码行数:101,代码来源:impact_function.py

示例14: run


#.........这里部分代码省略.........
            self.affected_buildings[hazard_zone] = {}

        wgs84_extent = QgsRectangle(
            self.requested_extent[0], self.requested_extent[1],
            self.requested_extent[2], self.requested_extent[3])

        # Run interpolation function for polygon2polygon
        interpolated_layer = interpolate_polygon_polygon(
            self.hazard.layer, self.exposure.layer, wgs84_extent)

        new_field = QgsField(self.target_field, QVariant.String)
        interpolated_layer.dataProvider().addAttributes([new_field])
        interpolated_layer.updateFields()

        attribute_names = [
            field.name() for field in interpolated_layer.pendingFields()]
        target_field_index = interpolated_layer.fieldNameIndex(
            self.target_field)
        changed_values = {}

        if interpolated_layer.featureCount() < 1:
            raise ZeroImpactException()

        # Extract relevant interpolated data
        for feature in interpolated_layer.getFeatures():
            hazard_value = feature[self.hazard_class_attribute]
            if not hazard_value:
                hazard_value = self._not_affected_value
            changed_values[feature.id()] = {target_field_index: hazard_value}

            if (self.exposure_class_attribute and
                    self.exposure_class_attribute in attribute_names):
                usage = feature[self.exposure_class_attribute]
            else:
                usage = get_osm_building_usage(attribute_names, feature)

            if usage is None:
                usage = tr('Unknown')
            if usage not in self.buildings:
                self.buildings[usage] = 0
                for category in self.affected_buildings.keys():
                    self.affected_buildings[category][usage] = OrderedDict(
                        [(tr('Buildings Affected'), 0)])
            self.buildings[usage] += 1
            if hazard_value in self.affected_buildings.keys():
                self.affected_buildings[hazard_value][usage][
                    tr('Buildings Affected')] += 1

        interpolated_layer.dataProvider().changeAttributeValues(changed_values)

        # Lump small entries and 'unknown' into 'other' category
        self._consolidate_to_other()

        # Generate simple impact report
        impact_summary = impact_table = self.html_report()

        # Create style
        categories = self.hazard_zones
        categories.append(self._not_affected_value)
        colours = color_ramp(len(categories))
        style_classes = []

        i = 0
        for hazard_zone in self.hazard_zones:
            style_class = dict()
            style_class['label'] = tr(hazard_zone)
            style_class['transparency'] = 0
            style_class['value'] = hazard_zone
            style_class['size'] = 1
            style_class['colour'] = colours[i]
            style_classes.append(style_class)
            i += 1

        # Override style info with new classes and name
        style_info = dict(target_field=self.target_field,
                          style_classes=style_classes,
                          style_type='categorizedSymbol')

        # For printing map purpose
        map_title = tr('Buildings affected by each hazard zone')
        legend_title = tr('Building count')
        legend_units = tr('(building)')
        legend_notes = tr('Thousand separator is represented by %s' %
                          get_thousand_separator())

        # Create vector layer and return
        impact_layer = Vector(
            data=interpolated_layer,
            name=tr('Buildings affected by each hazard zone'),
            keywords={'impact_summary': impact_summary,
                      'impact_table': impact_table,
                      'target_field': self.target_field,
                      'map_title': map_title,
                      'legend_notes': legend_notes,
                      'legend_units': legend_units,
                      'legend_title': legend_title},
            style_info=style_info)

        self._impact = impact_layer
        return impact_layer
开发者ID:Mloweedgar,项目名称:inasafe,代码行数:101,代码来源:impact_function.py

示例15: as_dict

    def as_dict():
        """Return metadata as a dictionary.

        This is a static method. You can use it to get the metadata in
        dictionary format for an impact function.

        :returns: A dictionary representing all the metadata for the
            concrete impact function.
        :rtype: dict
        """
        dict_meta = {
            'id': 'VolcanoPointPopulationFunction',
            'name': tr('Point volcano on population'),
            'impact': tr('Be impacted'),
            'title': tr('Be impacted'),
            'function_type': 'old-style',
            'author': 'AIFDR',
            'date_implemented': 'N/A',
            'hazard_input': tr(
                'A point vector layer.'),
            'exposure_input': tr(
                'An exposure raster layer where each cell represent '
                'population count.'),
            'output': tr(
                'Vector layer contains people affected and the minimum '
                'needs based on the number of people affected.'),
            'actions': tr(
                'Provide details about how many people would likely '
                'be affected by each hazard zone.'),
            'limitations': [],
            'citations': [],
            'map_title': tr('People affected by the buffered point volcano'),
            'legend_title': tr('Population'),
            'legend_units': tr('(people per cell)'),
            'legend_notes': tr(
                'Thousand separator is represented by  %s' %
                get_thousand_separator()),
            'layer_name': tr('People affected by the buffered point volcano'),
            'overview': tr(
                'To assess the impacts of volcano eruption on '
                'population.'),
            'detailed_description': '',
            'layer_requirements': {
                'hazard': {
                    'layer_mode': layer_mode_classified,
                    'layer_geometries': [layer_geometry_point],
                    'hazard_categories': [
                        hazard_category_multiple_event,
                        hazard_category_single_event
                    ],
                    'hazard_types': [hazard_volcano],
                    'continuous_hazard_units': [],
                    'vector_hazard_classifications': [],
                    'raster_hazard_classifications': [],
                    'additional_keywords': [volcano_name_field]
                },
                'exposure': {
                    'layer_mode': layer_mode_continuous,
                    'layer_geometries': [layer_geometry_raster],
                    'exposure_types': [exposure_population],
                    'exposure_units': [count_exposure_unit],
                    'exposure_class_fields': [],
                    'additional_keywords': []
                }
            },
            'parameters': OrderedDict([
                # The radii
                ('distances', distance()),
                ('postprocessors', OrderedDict([
                    ('Gender', default_gender_postprocessor()),
                    ('Age', age_postprocessor()),
                    ('MinimumNeeds', minimum_needs_selector()),
                ])),
                ('minimum needs', default_minimum_needs())
            ])
        }
        return dict_meta
开发者ID:jobel-openscience,项目名称:inasafe,代码行数:77,代码来源:metadata_definitions.py


注:本文中的safe.common.utilities.get_thousand_separator函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。