当前位置: 首页>>代码示例>>Python>>正文


Python Result.seeds方法代码示例

本文整理汇总了Python中qutip.solver.Result.seeds方法的典型用法代码示例。如果您正苦于以下问题:Python Result.seeds方法的具体用法?Python Result.seeds怎么用?Python Result.seeds使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在qutip.solver.Result的用法示例。


在下文中一共展示了Result.seeds方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: mcsolve

# 需要导入模块: from qutip.solver import Result [as 别名]
# 或者: from qutip.solver.Result import seeds [as 别名]
def mcsolve(H, psi0, tlist, c_ops, e_ops, ntraj=None,
            args={}, options=None, progress_bar=True,
            map_func=None, map_kwargs=None):
    """Monte Carlo evolution of a state vector :math:`|\psi \\rangle` for a
    given Hamiltonian and sets of collapse operators, and possibly, operators
    for calculating expectation values. Options for the underlying ODE solver
    are given by the Options class.

    mcsolve supports time-dependent Hamiltonians and collapse operators using
    either Python functions of strings to represent time-dependent
    coefficients. Note that, the system Hamiltonian MUST have at least one
    constant term.

    As an example of a time-dependent problem, consider a Hamiltonian with two
    terms ``H0`` and ``H1``, where ``H1`` is time-dependent with coefficient
    ``sin(w*t)``, and collapse operators ``C0`` and ``C1``, where ``C1`` is
    time-dependent with coeffcient ``exp(-a*t)``.  Here, w and a are constant
    arguments with values ``W`` and ``A``.

    Using the Python function time-dependent format requires two Python
    functions, one for each collapse coefficient. Therefore, this problem could
    be expressed as::

        def H1_coeff(t,args):
            return sin(args['w']*t)

        def C1_coeff(t,args):
            return exp(-args['a']*t)

        H = [H0, [H1, H1_coeff]]

        c_ops = [C0, [C1, C1_coeff]]

        args={'a': A, 'w': W}

    or in String (Cython) format we could write::

        H = [H0, [H1, 'sin(w*t)']]

        c_ops = [C0, [C1, 'exp(-a*t)']]

        args={'a': A, 'w': W}

    Constant terms are preferably placed first in the Hamiltonian and collapse
    operator lists.

    Parameters
    ----------
    H : :class:`qutip.Qobj`
        System Hamiltonian.

    psi0 : :class:`qutip.Qobj`
        Initial state vector

    tlist : array_like
        Times at which results are recorded.

    ntraj : int
        Number of trajectories to run.

    c_ops : array_like
        single collapse operator or ``list`` or ``array`` of collapse
        operators.

    e_ops : array_like
        single operator or ``list`` or ``array`` of operators for calculating
        expectation values.

    args : dict
        Arguments for time-dependent Hamiltonian and collapse operator terms.

    options : Options
        Instance of ODE solver options.

    progress_bar: BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation. Set to None to disable the
        progress bar.

    map_func: function
        A map function for managing the calls to the single-trajactory solver.

    map_kwargs: dictionary
        Optional keyword arguments to the map_func function.

    Returns
    -------
    results : :class:`qutip.solver.Result`
        Object storing all results from the simulation.

    .. note::

        It is possible to reuse the random number seeds from a previous run
        of the mcsolver by passing the output Result object seeds via the
        Options class, i.e. Options(seeds=prev_result.seeds).
    """

    if debug:
        print(inspect.stack()[0][3])

#.........这里部分代码省略.........
开发者ID:mil52603,项目名称:qutip,代码行数:103,代码来源:mcsolve.py


注:本文中的qutip.solver.Result.seeds方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。