当前位置: 首页>>代码示例>>Python>>正文


Python QuantumProgram.get_backend_configuration方法代码示例

本文整理汇总了Python中qiskit.QuantumProgram.get_backend_configuration方法的典型用法代码示例。如果您正苦于以下问题:Python QuantumProgram.get_backend_configuration方法的具体用法?Python QuantumProgram.get_backend_configuration怎么用?Python QuantumProgram.get_backend_configuration使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在qiskit.QuantumProgram的用法示例。


在下文中一共展示了QuantumProgram.get_backend_configuration方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_get_backend_configuration

# 需要导入模块: from qiskit import QuantumProgram [as 别名]
# 或者: from qiskit.QuantumProgram import get_backend_configuration [as 别名]
    def test_get_backend_configuration(self):
        """Test get_backend_configuration.

        If all correct should return configuration for the
        local_qasm_simulator.
        """
        qp = QuantumProgram(specs=QPS_SPECS)
        test = len(qp.get_backend_configuration("local_qasm_simulator"))
        self.assertEqual(test, 6)
开发者ID:SKRohit,项目名称:The_Math_of_Intelligence,代码行数:11,代码来源:test_quantumprogram.py

示例2: vqe

# 需要导入模块: from qiskit import QuantumProgram [as 别名]
# 或者: from qiskit.QuantumProgram import get_backend_configuration [as 别名]
def vqe(molecule='H2', depth=6, max_trials=200, shots=1):
    if molecule == 'H2':
        n_qubits = 2
        Z1 = 1
        Z2 = 1
        min_distance = 0.2
        max_distance = 4

    elif molecule == 'LiH':
        n_qubits = 4
        Z1 = 1
        Z2 = 3
        min_distance = 0.5
        max_distance = 5

    else:
        raise QISKitError("Unknown molecule for VQE.")

    # Read Hamiltonian
    ham_name = os.path.join(os.path.dirname(__file__),
                            molecule + '/' + molecule + 'Equilibrium.txt')
    pauli_list = Hamiltonian_from_file(ham_name)
    H = make_Hamiltonian(pauli_list)

    # Exact Energy
    exact = np.amin(la.eig(H)[0]).real
    print('The exact ground state energy is: {}'.format(exact))

    # Optimization
    device = 'local_qasm_simulator'
    qp = QuantumProgram()

    if shots != 1:
        H = group_paulis(pauli_list)

    entangler_map = qp.get_backend_configuration(device)['coupling_map']

    if entangler_map == 'all-to-all':
        entangler_map = {i: [j for j in range(n_qubits) if j != i] for i in range(n_qubits)}
    else:
        entangler_map = mapper.coupling_list2dict(entangler_map)

    initial_theta = np.random.randn(2 * n_qubits * depth)   # initial angles
    initial_c = 0.01                                        # first theta perturbations
    target_update = 2 * np.pi * 0.1                         # aimed update on first trial
    save_step = 20                                          # print optimization trajectory

    cost = partial(cost_function, qp, H, n_qubits, depth, entangler_map, shots, device)

    SPSA_params = SPSA_calibration(cost, initial_theta, initial_c, target_update, stat=25)
    output = SPSA_optimization(cost, initial_theta, SPSA_params, max_trials, save_step, last_avg=1)

    return qp
开发者ID:christians94,项目名称:qiskit-sdk-py,代码行数:55,代码来源:vqe.py

示例3: pprint

# 需要导入模块: from qiskit import QuantumProgram [as 别名]
# 或者: from qiskit.QuantumProgram import get_backend_configuration [as 别名]
circuits = ['Bell']

qobj = qp.compile(circuits, backend)

result = qp.run(qobj, wait=2, timeout=240)


#print(result.get_counts('Bell'))

pprint(qp.available_backends())

#pprint(qp.get_backend_status('ibmqx2'))


pprint(qp.get_backend_configuration('ibmqx5'))




# quantum register for the first circuit
q1 = qp.create_quantum_register('q1', 4)
c1 = qp.create_classical_register('c1', 4)
# quantum register for the second circuit
q2 = qp.create_quantum_register('q2', 2)
c2 = qp.create_classical_register('c2', 2)
# making the first circuits
qc1 = qp.create_circuit('GHZ', [q1], [c1])
qc2 = qp.create_circuit('superpostion', [q2], [c2])
qc1.h(q1[0])
qc1.cx(q1[0], q1[1])
开发者ID:vtomole,项目名称:project-1,代码行数:32,代码来源:bell.py


注:本文中的qiskit.QuantumProgram.get_backend_configuration方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。