当前位置: 首页>>代码示例>>Python>>正文


Python TimeSeriesCalcs.create_mult_index方法代码示例

本文整理汇总了Python中pythalesians.timeseries.calcs.timeseriescalcs.TimeSeriesCalcs.create_mult_index方法的典型用法代码示例。如果您正苦于以下问题:Python TimeSeriesCalcs.create_mult_index方法的具体用法?Python TimeSeriesCalcs.create_mult_index怎么用?Python TimeSeriesCalcs.create_mult_index使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pythalesians.timeseries.calcs.timeseriescalcs.TimeSeriesCalcs的用法示例。


在下文中一共展示了TimeSeriesCalcs.create_mult_index方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: bus_day_of_month_seasonality

# 需要导入模块: from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs [as 别名]
# 或者: from pythalesians.timeseries.calcs.timeseriescalcs.TimeSeriesCalcs import create_mult_index [as 别名]
    def bus_day_of_month_seasonality(
        self,
        data_frame,
        month_list=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
        cum=True,
        cal="FX",
        partition_by_month=True,
    ):

        tsc = TimeSeriesCalcs()
        tsf = TimeSeriesFilter()

        data_frame.index = pandas.to_datetime(data_frame.index)
        data_frame = tsf.filter_time_series_by_holidays(data_frame, cal)

        monthly_seasonality = tsc.average_by_month_day_by_bus_day(data_frame, cal)
        monthly_seasonality = monthly_seasonality.loc[month_list]

        if partition_by_month:
            monthly_seasonality = monthly_seasonality.unstack(level=0)

        if cum is True:
            monthly_seasonality.ix[0] = numpy.zeros(len(monthly_seasonality.columns))

            if partition_by_month:
                monthly_seasonality.index = monthly_seasonality.index + 1  # shifting index
                monthly_seasonality = monthly_seasonality.sort()  # sorting by index

            monthly_seasonality = tsc.create_mult_index(monthly_seasonality)

        return monthly_seasonality
开发者ID:humdings,项目名称:pythalesians,代码行数:33,代码来源:seasonality.py

示例2: calculate_ret_stats

# 需要导入模块: from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs [as 别名]
# 或者: from pythalesians.timeseries.calcs.timeseriescalcs.TimeSeriesCalcs import create_mult_index [as 别名]
    def calculate_ret_stats(self, returns_df, ann_factor):
        """
        calculate_ret_stats - Calculates return statistics for an asset's returns including IR, vol, ret and drawdowns

        Parameters
        ----------
        returns_df : DataFrame
            asset returns
        ann_factor : int
            annualisation factor to use on return statistics

        Returns
        -------
        DataFrame
        """
        tsc = TimeSeriesCalcs()

        self._rets = returns_df.mean(axis=0) * ann_factor
        self._vol = returns_df.std(axis=0) * math.sqrt(ann_factor)
        self._inforatio = self._rets / self._vol
        self._kurtosis = returns_df.kurtosis(axis=0)

        index_df = tsc.create_mult_index(returns_df)
        max2here = pandas.expanding_max(index_df)
        dd2here = index_df / max2here - 1

        self._dd = dd2here.min()
开发者ID:DDDDavid,项目名称:pythalesians,代码行数:29,代码来源:timeseriesdesc.py

示例3: bus_day_of_month_seasonality

# 需要导入模块: from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs [as 别名]
# 或者: from pythalesians.timeseries.calcs.timeseriescalcs.TimeSeriesCalcs import create_mult_index [as 别名]
    def bus_day_of_month_seasonality(self, data_frame,
                                 month_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], cum = True,
                                 cal = "FX", partition_by_month = True, add_average = False, price_index = False):

        tsc = TimeSeriesCalcs()
        tsf = TimeSeriesFilter()

        if price_index:
            data_frame = data_frame.resample('B')           # resample into business days
            data_frame = tsc.calculate_returns(data_frame)

        data_frame.index = pandas.to_datetime(data_frame.index)
        data_frame = tsf.filter_time_series_by_holidays(data_frame, cal)

        monthly_seasonality = tsc.average_by_month_day_by_bus_day(data_frame, cal)
        monthly_seasonality = monthly_seasonality.loc[month_list]

        if partition_by_month:
            monthly_seasonality = monthly_seasonality.unstack(level=0)

            if add_average:
               monthly_seasonality['Avg'] = monthly_seasonality.mean(axis=1)

        if cum is True:
            if partition_by_month:
                monthly_seasonality.loc[0] = numpy.zeros(len(monthly_seasonality.columns))
                # monthly_seasonality.index = monthly_seasonality.index + 1       # shifting index
                monthly_seasonality = monthly_seasonality.sort()

            monthly_seasonality = tsc.create_mult_index(monthly_seasonality)

        return monthly_seasonality
开发者ID:BryanFletcher,项目名称:pythalesians,代码行数:34,代码来源:seasonality.py

示例4: calculate_ret_stats

# 需要导入模块: from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs [as 别名]
# 或者: from pythalesians.timeseries.calcs.timeseriescalcs.TimeSeriesCalcs import create_mult_index [as 别名]
    def calculate_ret_stats(self, returns_df, ann_factor):
        tsc = TimeSeriesCalcs()

        self._rets = returns_df.mean(axis=0) * ann_factor
        self._vol = returns_df.std(axis=0) * math.sqrt(ann_factor)
        self._inforatio = self._rets / self._vol

        index_df = tsc.create_mult_index(returns_df)
        max2here = pandas.expanding_max(index_df)
        dd2here = index_df / max2here - 1

        self._dd = dd2here.min()
开发者ID:quantcruncher,项目名称:pythalesians,代码行数:14,代码来源:timeseriesdesc.py

示例5: calculate_vol_adjusted_index_from_prices

# 需要导入模块: from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs [as 别名]
# 或者: from pythalesians.timeseries.calcs.timeseriescalcs.TimeSeriesCalcs import create_mult_index [as 别名]
    def calculate_vol_adjusted_index_from_prices(self, prices_df, br):
        """
        calculate_vol_adjusted_index_from_price - Adjusts an index of prices for a vol target

        Parameters
        ----------
        br : BacktestRequest
            Parameters for the backtest specifying start date, finish data, transaction costs etc.

        asset_a_df : pandas.DataFrame
            Asset prices to be traded

        Returns
        -------
        pandas.Dataframe containing vol adjusted index
        """

        tsc = TimeSeriesCalcs()

        returns_df, leverage_df = self.calculate_vol_adjusted_returns(prices_df, br, returns = False)

        return tsc.create_mult_index(returns_df)
开发者ID:Sahanduiuc,项目名称:pythalesians,代码行数:24,代码来源:cashbacktest.py

示例6: monthly_seasonality

# 需要导入模块: from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs [as 别名]
# 或者: from pythalesians.timeseries.calcs.timeseriescalcs.TimeSeriesCalcs import create_mult_index [as 别名]
    def monthly_seasonality(self, data_frame,
                                  cum = True,
                                  add_average = False, price_index = False):

        tsc = TimeSeriesCalcs()

        if price_index:
            data_frame = data_frame.resample('BM')          # resample into month end
            data_frame = tsc.calculate_returns(data_frame)

        data_frame.index = pandas.to_datetime(data_frame.index)

        monthly_seasonality = tsc.average_by_month(data_frame)

        if add_average:
            monthly_seasonality['Avg'] = monthly_seasonality.mean(axis=1)

        if cum is True:
            monthly_seasonality.loc[0] = numpy.zeros(len(monthly_seasonality.columns))
            monthly_seasonality = monthly_seasonality.sort()

            monthly_seasonality = tsc.create_mult_index(monthly_seasonality)

        return monthly_seasonality
开发者ID:BryanFletcher,项目名称:pythalesians,代码行数:26,代码来源:seasonality.py

示例7: calculate_trading_PnL

# 需要导入模块: from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs [as 别名]
# 或者: from pythalesians.timeseries.calcs.timeseriescalcs.TimeSeriesCalcs import create_mult_index [as 别名]

#.........这里部分代码省略.........
        signal_df : pandas.DataFrame
            Signals for the trading strategy
        """

        tsc = TimeSeriesCalcs()
        # signal_df.to_csv('e:/temp0.csv')
        # make sure the dates of both traded asset and signal are aligned properly
        asset_df, signal_df = asset_a_df.align(signal_df, join='left', axis = 'index')

        # only allow signals to change on the days when we can trade assets
        signal_df = signal_df.mask(numpy.isnan(asset_df.values))    # fill asset holidays with NaN signals
        signal_df = signal_df.fillna(method='ffill')                # fill these down
        asset_df = asset_df.fillna(method='ffill')                  # fill down asset holidays

        returns_df = tsc.calculate_returns(asset_df)
        tc = br.spot_tc_bp

        signal_cols = signal_df.columns.values
        returns_cols = returns_df.columns.values

        pnl_cols = []

        for i in range(0, len(returns_cols)):
            pnl_cols.append(returns_cols[i] + " / " + signal_cols[i])

        # do we have a vol target for individual signals?
        if hasattr(br, 'signal_vol_adjust'):
            if br.signal_vol_adjust is True:
                if not(hasattr(br, 'signal_vol_resample_type')):
                    br.signal_vol_resample_type = 'mean'

                leverage_df = self.calculate_leverage_factor(returns_df, br.signal_vol_target, br.signal_vol_max_leverage,
                                               br.signal_vol_periods, br.signal_vol_obs_in_year,
                                               br.signal_vol_rebalance_freq, br.signal_vol_resample_freq,
                                               br.signal_vol_resample_type)

                signal_df = pandas.DataFrame(
                    signal_df.values * leverage_df.values, index = signal_df.index, columns = signal_df.columns)

                self._individual_leverage = leverage_df     # contains leverage of individual signal (before portfolio vol target)

        _pnl = tsc.calculate_signal_returns_with_tc_matrix(signal_df, returns_df, tc = tc)
        _pnl.columns = pnl_cols

        # portfolio is average of the underlying signals: should we sum them or average them?
        if hasattr(br, 'portfolio_combination'):
            if br.portfolio_combination == 'sum':
                 portfolio = pandas.DataFrame(data = _pnl.sum(axis = 1), index = _pnl.index, columns = ['Portfolio'])
            elif br.portfolio_combination == 'mean':
                 portfolio = pandas.DataFrame(data = _pnl.mean(axis = 1), index = _pnl.index, columns = ['Portfolio'])
        else:
            portfolio = pandas.DataFrame(data = _pnl.mean(axis = 1), index = _pnl.index, columns = ['Portfolio'])

        portfolio_leverage_df = pandas.DataFrame(data = numpy.ones(len(_pnl.index)), index = _pnl.index, columns = ['Portfolio'])

        # should we apply vol target on a portfolio level basis?
        if hasattr(br, 'portfolio_vol_adjust'):
            if br.portfolio_vol_adjust is True:
                portfolio, portfolio_leverage_df = self.calculate_vol_adjusted_returns(portfolio, br = br)

        self._portfolio = portfolio
        self._signal = signal_df                            # individual signals (before portfolio leverage)
        self._portfolio_leverage = portfolio_leverage_df    # leverage on portfolio

        # multiply portfolio leverage * individual signals to get final position signals
        length_cols = len(signal_df.columns)
        leverage_matrix = numpy.repeat(portfolio_leverage_df.values.flatten()[numpy.newaxis,:], length_cols, 0)

        # final portfolio signals (including signal & portfolio leverage)
        self._portfolio_signal = pandas.DataFrame(
            data = numpy.multiply(numpy.transpose(leverage_matrix), signal_df.values),
            index = signal_df.index, columns = signal_df.columns)

        if hasattr(br, 'portfolio_combination'):
            if br.portfolio_combination == 'sum':
                pass
            elif br.portfolio_combination == 'mean':
                self._portfolio_signal = self._portfolio_signal / float(length_cols)
        else:
            self._portfolio_signal = self._portfolio_signal / float(length_cols)

        self._pnl = _pnl                                                            # individual signals P&L

        # TODO FIX very slow - hence only calculate on demand
        _pnl_trades = None
        # _pnl_trades = tsc.calculate_individual_trade_gains(signal_df, _pnl)
        self._pnl_trades = _pnl_trades

        self._tsd_pnl = TimeSeriesDesc()
        self._tsd_pnl.calculate_ret_stats(self._pnl, br.ann_factor)

        self._portfolio.columns = ['Port']
        self._tsd_portfolio = TimeSeriesDesc()
        self._tsd_portfolio.calculate_ret_stats(self._portfolio, br.ann_factor)

        self._cumpnl = tsc.create_mult_index(self._pnl)                             # individual signals cumulative P&L
        self._cumpnl.columns = pnl_cols

        self._cumportfolio = tsc.create_mult_index(self._portfolio)                 # portfolio cumulative P&L
        self._cumportfolio.columns = ['Port']
开发者ID:Sahanduiuc,项目名称:pythalesians,代码行数:104,代码来源:cashbacktest.py

示例8: get_intraday_moves_over_custom_event

# 需要导入模块: from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs [as 别名]
# 或者: from pythalesians.timeseries.calcs.timeseriescalcs.TimeSeriesCalcs import create_mult_index [as 别名]
    def get_intraday_moves_over_custom_event(self, data_frame_rets, ef_time_frame, vol=False,
                                             minute_start = 5, mins = 3 * 60, min_offset = 0 , create_index = False,
                                             resample = False, freq = 'minutes'):

        tsf = TimeSeriesFilter()
        ef_time_frame = tsf.filter_time_series_by_date(data_frame_rets.index[0], data_frame_rets.index[-1], ef_time_frame)
        ef_time = ef_time_frame.index

        if freq == 'minutes':
            ef_time_start = ef_time - timedelta(minutes = minute_start)
            ef_time_end = ef_time + timedelta(minutes = mins)
            ann_factor = 252 * 1440
        elif freq == 'days':
            ef_time = ef_time_frame.index.normalize()
            ef_time_start = ef_time - timedelta(days = minute_start)
            ef_time_end = ef_time + timedelta(days = mins)
            ann_factor = 252

        ords = range(-minute_start + min_offset, mins + min_offset)

        # all data needs to be equally spaced
        if resample:
            tsf = TimeSeriesFilter()

            # make sure time series is properly sampled at 1 min intervals
            data_frame_rets = data_frame_rets.resample('1min')
            data_frame_rets = data_frame_rets.fillna(value = 0)
            data_frame_rets = tsf.remove_out_FX_out_of_hours(data_frame_rets)

        data_frame_rets['Ind'] = numpy.nan

        start_index = data_frame_rets.index.searchsorted(ef_time_start)
        finish_index = data_frame_rets.index.searchsorted(ef_time_end)

        # not all observation windows will be same length (eg. last one?)

        # fill the indices which represent minutes
        # TODO vectorise this!
        for i in range(0, len(ef_time_frame.index)):
            try:
                data_frame_rets.ix[start_index[i]:finish_index[i], 'Ind'] = ords
            except:
                data_frame_rets.ix[start_index[i]:finish_index[i], 'Ind'] = ords[0:(finish_index[i] - start_index[i])]

        # set the release dates
        data_frame_rets.ix[start_index,'Rel'] = ef_time                                         # set entry points
        data_frame_rets.ix[finish_index + 1,'Rel'] = numpy.zeros(len(start_index))              # set exit points
        data_frame_rets['Rel'] = data_frame_rets['Rel'].fillna(method = 'pad')                  # fill down signals

        data_frame_rets = data_frame_rets[pandas.notnull(data_frame_rets['Ind'])]               # get rid of other

        data_frame = data_frame_rets.pivot(index='Ind',
                                           columns='Rel', values=data_frame_rets.columns[0])

        data_frame.index.names = [None]

        if create_index:
            tsc = TimeSeriesCalcs()
            data_frame.ix[-minute_start + min_offset,:] = numpy.nan
            data_frame = tsc.create_mult_index(data_frame)
        else:
            if vol is True:
                # annualise (if vol)
                data_frame = pandas.rolling_std(data_frame, window=5) * math.sqrt(ann_factor)
            else:
                data_frame = data_frame.cumsum()

        return data_frame
开发者ID:Profinact,项目名称:pythalesians,代码行数:70,代码来源:eventstudy.py

示例9: get_fx_cross

# 需要导入模块: from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs [as 别名]
# 或者: from pythalesians.timeseries.calcs.timeseriescalcs.TimeSeriesCalcs import create_mult_index [as 别名]

#.........这里部分代码省略.........
        time_series_request.cut = cut                           # NYC/BGN ticker
        time_series_request.fields = 'close'                    # close field only
        time_series_request.cache_algo = cache_algo             # cache_algo_only, cache_algo_return, internet_load

        time_series_request.environment = 'backtest'
        time_series_request.start_date = start
        time_series_request.finish_date = end
        time_series_request.data_source = source

        for cr in cross:
            base = cr[0:3]
            terms = cr[3:6]

            if (type == 'spot'):
                # non-USD crosses
                if base != 'USD' and terms != 'USD':
                    base_USD = self.fxconv.correct_notation('USD' + base)
                    terms_USD = self.fxconv.correct_notation('USD' + terms)

                    # TODO check if the cross exists in the database

                    # download base USD cross
                    time_series_request.tickers = base_USD
                    time_series_request.category = self.fxconv.em_or_g10(base, freq)
                    base_vals = time_series_factory.harvest_time_series(time_series_request)

                    # download terms USD cross
                    time_series_request.tickers = terms_USD
                    time_series_request.category = self.fxconv.em_or_g10(terms, freq)
                    terms_vals = time_series_factory.harvest_time_series(time_series_request)

                    if (base_USD[0:3] == 'USD'):
                        base_vals = 1 / base_vals
                    if (terms_USD[0:3] == 'USD'):
                        terms_vals = 1 / terms_vals

                    base_vals.columns = ['temp']
                    terms_vals.columns = ['temp']
                    cross_vals = base_vals.div(terms_vals, axis = 'index')
                    cross_vals.columns = [cr + '.close']

                else:
                    if base == 'USD': non_USD = terms
                    if terms == 'USD': non_USD = base

                    correct_cr = self.fxconv.correct_notation(cr)

                    time_series_request.tickers = correct_cr
                    time_series_request.category = self.fxconv.em_or_g10(non_USD, freq)
                    cross_vals = time_series_factory.harvest_time_series(time_series_request)

                    # flip if not convention
                    if(correct_cr != cr):
                        cross_vals = 1 / cross_vals

                    cross_vals.columns.names = [cr + '.close']

            elif type[0:3] == "tot":
                if freq == 'daily':
                    # download base USD cross
                    time_series_request.tickers = base + 'USD'
                    time_series_request.category = self.fxconv.em_or_g10(base, freq) + '-tot'

                    if type == "tot":
                        base_vals = time_series_factory.harvest_time_series(time_series_request)
                    else:
                        x = 0

                    # download terms USD cross
                    time_series_request.tickers = terms + 'USD'
                    time_series_request.category = self.fxconv.em_or_g10(terms, freq) + '-tot'

                    if type == "tot":
                        terms_vals = time_series_factory.harvest_time_series(time_series_request)
                    else:
                        x = 0

                    base_rets = time_series_calcs.calculate_returns(base_vals)
                    terms_rets = time_series_calcs.calculate_returns(terms_vals)

                    cross_rets = base_rets.sub(terms_rets.iloc[:,0],axis=0)

                    # first returns of a time series will by NaN, given we don't know previous point
                    cross_rets.iloc[0] = 0

                    cross_vals = time_series_calcs.create_mult_index(cross_rets)
                    cross_vals.columns = [cr + '-tot.close']

                elif freq == 'intraday':
                    self.logger.info('Total calculated returns for intraday not implemented yet')
                    return None

            if data_frame_agg is None:
                data_frame_agg = cross_vals
            else:
                data_frame_agg = data_frame_agg.join(cross_vals, how='outer')

        # strip the nan elements
        data_frame_agg = data_frame_agg.dropna()
        return data_frame_agg
开发者ID:quantcruncher,项目名称:pythalesians,代码行数:104,代码来源:fxcrossfactory.py

示例10: calculate_trading_PnL

# 需要导入模块: from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs [as 别名]
# 或者: from pythalesians.timeseries.calcs.timeseriescalcs.TimeSeriesCalcs import create_mult_index [as 别名]
    def calculate_trading_PnL(self, br, asset_a_df, signal_df):
        """
        calculate_trading_PnL - Calculates P&L of a trading strategy and statistics to be retrieved later

        Parameters
        ----------
        br : BacktestRequest
            Parameters for the backtest specifying start date, finish data, transaction costs etc.

        asset_a_df : pandas.DataFrame
            Asset prices to be traded

        signal_df : pandas.DataFrame
            Signals for the trading strategy
        """

        tsc = TimeSeriesCalcs()

        # make sure the dates of both traded asset and signal are aligned properly
        asset_df, signal_df = asset_a_df.align(signal_df, join='left', axis = 0)

        # only allow signals to change on the days when we can trade assets
        signal_df = signal_df.mask(numpy.isnan(asset_df.values))    # fill asset holidays with NaN signals
        signal_df = signal_df.fillna(method='ffill')                # fill these down
        asset_df = asset_df.fillna(method='ffill')                  # fill down asset holidays

        returns_df = tsc.calculate_returns(asset_df)
        tc = br.spot_tc_bp

        signal_cols = signal_df.columns.values
        returns_cols = returns_df.columns.values

        pnl_cols = []

        for i in range(0, len(returns_cols)):
            pnl_cols.append(returns_cols[i] + " / " + signal_cols[i])

        if hasattr(br, 'signal_vol_adjust'):
            if br.signal_vol_adjust is True:
                leverage_df = self.calculate_leverage_factor(returns_df, br.signal_vol_target, br.signal_vol_max_leverage,
                                               br.signal_vol_periods, br.signal_vol_obs_in_year,
                                               br.signal_vol_rebalance_freq)

                signal_df = pandas.DataFrame(
                    signal_df.values * leverage_df.values, index = signal_df.index, columns = signal_df.columns)

                self._individual_leverage = leverage_df

        _pnl = tsc.calculate_signal_returns_with_tc_matrix(signal_df, returns_df, tc = tc)
        _pnl.columns = pnl_cols

        # portfolio is average of the underlying signals
        interim_portfolio = pandas.DataFrame(data = _pnl.mean(axis = 1), index = _pnl.index, columns = ['Portfolio'])

        portfolio_leverage_df = pandas.DataFrame(data = numpy.ones(len(_pnl.index)), index = _pnl.index, columns = ['Portfolio'])

        if hasattr(br, 'portfolio_vol_adjust'):
            if br.portfolio_vol_adjust is True:
                interim_portfolio, portfolio_leverage_df = self.calculate_vol_adjusted_returns(interim_portfolio, br = br)

        self._portfolio = interim_portfolio
        self._signal = signal_df
        self._portfolio_leverage = portfolio_leverage_df

        # multiply portfolio leverage * individual signals to get final position signals
        length_cols = len(signal_df.columns)
        leverage_matrix = numpy.repeat(portfolio_leverage_df.values.flatten()[numpy.newaxis,:], length_cols, 0)

        self._portfolio_signal = pandas.DataFrame(
            data = numpy.multiply(numpy.transpose(leverage_matrix), signal_df.values),
            index = signal_df.index, columns = signal_df.columns) / float(length_cols)

        self._pnl = _pnl

        self._tsd_pnl = TimeSeriesDesc()
        self._tsd_pnl.calculate_ret_stats(self._pnl, br.ann_factor)

        self._portfolio.columns = ['Port']
        self._tsd_portfolio = TimeSeriesDesc()
        self._tsd_portfolio.calculate_ret_stats(self._portfolio, br.ann_factor)

        self._cumpnl = tsc.create_mult_index(self._pnl)
        self._cumpnl.columns = pnl_cols

        self._cumportfolio = tsc.create_mult_index(self._portfolio)
        self._cumportfolio.columns = ['Port']
开发者ID:humdings,项目名称:pythalesians,代码行数:88,代码来源:cashbacktest.py


注:本文中的pythalesians.timeseries.calcs.timeseriescalcs.TimeSeriesCalcs.create_mult_index方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。