本文整理汇总了Python中pystruct.utils.make_grid_edges函数的典型用法代码示例。如果您正苦于以下问题:Python make_grid_edges函数的具体用法?Python make_grid_edges怎么用?Python make_grid_edges使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了make_grid_edges函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_latent_node_boxes_edge_features
def test_latent_node_boxes_edge_features():
# learn the "easy" 2x2 boxes dataset.
# smoketest using a single constant edge feature
X, Y = make_simple_2x2(seed=1, n_samples=40)
latent_crf = EdgeFeatureLatentNodeCRF(n_labels=2, n_hidden_states=2, n_features=1)
base_svm = OneSlackSSVM(latent_crf)
base_svm.C = 10
latent_svm = LatentSSVM(base_svm,
latent_iter=10)
G = [make_grid_edges(x) for x in X]
# make edges for hidden states:
edges = make_edges_2x2()
G = [np.vstack([make_grid_edges(x), edges]) for x in X]
# reshape / flatten x and y
X_flat = [x.reshape(-1, 1) for x in X]
Y_flat = [y.ravel() for y in Y]
#X_ = zip(X_flat, G, [2 * 2 for x in X_flat])
# add edge features
X_ = [(x, g, np.ones((len(g), 1)), 4) for x, g in zip(X_flat, G)]
latent_svm.fit(X_[:20], Y_flat[:20])
assert_array_equal(latent_svm.predict(X_[:20]), Y_flat[:20])
assert_equal(latent_svm.score(X_[:20], Y_flat[:20]), 1)
# test that score is not always 1
assert_true(.98 < latent_svm.score(X_[20:], Y_flat[20:]) < 1)
示例2: test_latent_node_boxes_standard_latent
def test_latent_node_boxes_standard_latent():
# learn the "easy" 2x2 boxes dataset.
# a 2x2 box is placed randomly in a 4x4 grid
# we add a latent variable for each 2x2 patch
# that should make the model fairly simple
X, Y = make_simple_2x2(seed=1, n_samples=40)
latent_crf = LatentNodeCRF(n_labels=2, n_hidden_states=2, n_features=1)
one_slack = OneSlackSSVM(latent_crf)
n_slack = NSlackSSVM(latent_crf)
subgradient = SubgradientSSVM(latent_crf, max_iter=100)
for base_svm in [one_slack, n_slack, subgradient]:
base_svm.C = 10
latent_svm = LatentSSVM(base_svm,
latent_iter=10)
G = [make_grid_edges(x) for x in X]
# make edges for hidden states:
edges = make_edges_2x2()
G = [np.vstack([make_grid_edges(x), edges]) for x in X]
# reshape / flatten x and y
X_flat = [x.reshape(-1, 1) for x in X]
Y_flat = [y.ravel() for y in Y]
X_ = list(zip(X_flat, G, [2 * 2 for x in X_flat]))
latent_svm.fit(X_[:20], Y_flat[:20])
assert_array_equal(latent_svm.predict(X_[:20]), Y_flat[:20])
assert_equal(latent_svm.score(X_[:20], Y_flat[:20]), 1)
# test that score is not always 1
assert_true(.98 < latent_svm.score(X_[20:], Y_flat[20:]) < 1)
示例3: test_latent_node_boxes_latent_subgradient
def test_latent_node_boxes_latent_subgradient():
# same as above, now with elementary subgradients
# learn the "easy" 2x2 boxes dataset.
# a 2x2 box is placed randomly in a 4x4 grid
# we add a latent variable for each 2x2 patch
# that should make the model fairly simple
X, Y = toy.make_simple_2x2(seed=1)
latent_crf = LatentNodeCRF(n_labels=2, inference_method='lp',
n_hidden_states=2, n_features=1)
latent_svm = LatentSubgradientSSVM(model=latent_crf, max_iter=250, C=10,
verbose=10, learning_rate=0.1,
momentum=0)
G = [make_grid_edges(x) for x in X]
# make edges for hidden states:
edges = []
node_indices = np.arange(4 * 4).reshape(4, 4)
for i, (x, y) in enumerate(itertools.product([0, 2], repeat=2)):
for j in xrange(x, x + 2):
for k in xrange(y, y + 2):
edges.append([i + 4 * 4, node_indices[j, k]])
G = [np.vstack([make_grid_edges(x), edges]) for x in X]
# reshape / flatten x and y
X_flat = [x.reshape(-1, 1) for x in X]
Y_flat = [y.ravel() for y in Y]
X_ = zip(X_flat, G, [4 * 4 for x in X_flat])
latent_svm.fit(X_, Y_flat)
assert_equal(latent_svm.score(X_, Y_flat), 1)
示例4: test_joint_feature_discrete
def test_joint_feature_discrete():
"""
Testing with a single type of nodes. Must de aw well as EdgeFeatureGraphCRF
"""
X, Y = generate_blocks_multinomial(noise=2, n_samples=1, seed=1)
x, y = X[0], Y[0]
edge_list = make_grid_edges(x, 4, return_lists=True)
edges = np.vstack(edge_list)
edge_features = edge_list_to_features(edge_list)
x = ([x.reshape(-1, 3)], [edges], [edge_features])
y_flat = y.ravel()
#for inference_method in get_installed(["lp", "ad3", "qpbo"]):
if True:
crf = NodeTypeEdgeFeatureGraphCRF(1, [3], [3], [[2]])
joint_feature_y = crf.joint_feature(x, y_flat)
assert_equal(joint_feature_y.shape, (crf.size_joint_feature,))
# first horizontal, then vertical
# we trust the unaries ;)
n_states = crf.l_n_states[0]
n_features = crf.l_n_features[0]
pw_joint_feature_horz, pw_joint_feature_vert = joint_feature_y[n_states *
n_features:].reshape(
2, n_states, n_states)
assert_array_equal(pw_joint_feature_vert, np.diag([9 * 4, 9 * 4, 9 * 4]))
vert_joint_feature = np.diag([10 * 3, 10 * 3, 10 * 3])
vert_joint_feature[0, 1] = 10
vert_joint_feature[1, 2] = 10
assert_array_equal(pw_joint_feature_horz, vert_joint_feature)
示例5: test_binary_blocks_cutting_plane
def test_binary_blocks_cutting_plane():
#testing cutting plane ssvm on easy binary dataset
# generate graphs explicitly for each example
for inference_method in get_installed(["lp", "qpbo", "ad3", 'ogm']):
X, Y = generate_blocks(n_samples=3)
crf = GraphCRF(inference_method=inference_method)
clf = NSlackSSVM(model=crf, max_iter=20, C=100, check_constraints=True,
break_on_bad=False, n_jobs=1)
x1, x2, x3 = X
y1, y2, y3 = Y
n_states = len(np.unique(Y))
# delete some rows to make it more fun
x1, y1 = x1[:, :-1], y1[:, :-1]
x2, y2 = x2[:-1], y2[:-1]
# generate graphs
X_ = [x1, x2, x3]
G = [make_grid_edges(x) for x in X_]
# reshape / flatten x and y
X_ = [x.reshape(-1, n_states) for x in X_]
Y = [y.ravel() for y in [y1, y2, y3]]
X = list(zip(X_, G))
clf.fit(X, Y)
Y_pred = clf.predict(X)
for y, y_pred in zip(Y, Y_pred):
assert_array_equal(y, y_pred)
示例6: prepare_data
def prepare_data(X):
X_directions = []
X_edge_features = []
for x in X:
# get edges in grid
right, down = make_grid_edges(x, return_lists=True)
edges = np.vstack([right, down])
# use 3x3 patch around each point
features = neighborhood_feature(x)
# simple edge feature that encodes just if an edge is horizontal or
# vertical
edge_features_directions = edge_list_to_features([right, down])
# edge feature that contains features from the nodes that the edge connects
edge_features = np.zeros((edges.shape[0], features.shape[1], 4))
edge_features[:len(right), :, 0] = features[right[:, 0]]
edge_features[:len(right), :, 1] = features[right[:, 1]]
#---ORIGINAL CODE
# edge_features[len(right):, :, 0] = features[down[:, 0]]
# edge_features[len(right):, :, 1] = features[down[:, 1]]
edge_features[len(right):, :, 2] = features[down[:, 0]]
edge_features[len(right):, :, 3] = features[down[:, 1]]
#---END OF FIX
edge_features = edge_features.reshape(edges.shape[0], -1)
X_directions.append((features, edges, edge_features_directions))
X_edge_features.append((features, edges, edge_features))
return X_directions, X_edge_features
示例7: test_energy_discrete
def test_energy_discrete():
# for inference_method in get_installed(["qpbo", "ad3"]):
# crf = EdgeFeatureGraphCRF(n_states=3,
# inference_method=inference_method,
# n_edge_features=2, n_features=3)
crf = NodeTypeEdgeFeatureGraphCRF(1, [3], [3], [[2]])
for i in range(10):
x = np.random.normal(size=(7, 8, 3))
edge_list = make_grid_edges(x, 4, return_lists=True)
edges = np.vstack(edge_list)
edge_features = edge_list_to_features(edge_list)
x = ([x.reshape(-1, 3)], [edges], [edge_features])
unary_params = np.random.normal(size=(3, 3))
pw1 = np.random.normal(size=(3, 3))
pw2 = np.random.normal(size=(3, 3))
w = np.hstack([unary_params.ravel(), pw1.ravel(), pw2.ravel()])
crf.initialize(x)
y_hat = crf.inference(x, w, relaxed=False)
#flat_edges = crf._index_all_edges(x)
energy = compute_energy(crf._get_unary_potentials(x, w)[0],
crf._get_pairwise_potentials(x, w)[0], edges, #CAUTION: pass the flatened edges!!
y_hat)
joint_feature = crf.joint_feature(x, y_hat)
energy_svm = np.dot(joint_feature, w)
assert_almost_equal(energy, energy_svm)
示例8: test_energy_continuous
def test_energy_continuous():
# make sure that energy as computed by ssvm is the same as by lp
np.random.seed(0)
for inference_method in get_installed(["lp", "ad3"]):
found_fractional = False
crf = EdgeFeatureGraphCRF(n_states=3,
inference_method=inference_method,
n_edge_features=2, n_features=3)
while not found_fractional:
x = np.random.normal(size=(7, 8, 3))
edge_list = make_grid_edges(x, 4, return_lists=True)
edges = np.vstack(edge_list)
edge_features = edge_list_to_features(edge_list)
x = (x.reshape(-1, 3), edges, edge_features)
unary_params = np.random.normal(size=(3, 3))
pw1 = np.random.normal(size=(3, 3))
pw2 = np.random.normal(size=(3, 3))
w = np.hstack([unary_params.ravel(), pw1.ravel(), pw2.ravel()])
res, energy = crf.inference(x, w, relaxed=True, return_energy=True)
found_fractional = np.any(np.max(res[0], axis=-1) != 1)
joint_feature = crf.joint_feature(x, res)
energy_svm = np.dot(joint_feature, w)
assert_almost_equal(energy, -energy_svm)
示例9: test_binary_blocks_one_slack_graph
def test_binary_blocks_one_slack_graph():
#testing cutting plane ssvm on easy binary dataset
# generate graphs explicitly for each example
for inference_method in ["dai", "lp"]:
print("testing %s" % inference_method)
X, Y = toy.generate_blocks(n_samples=3)
crf = GraphCRF(inference_method=inference_method)
clf = OneSlackSSVM(problem=crf, max_iter=100, C=100, verbose=100,
check_constraints=True, break_on_bad=True,
n_jobs=1)
x1, x2, x3 = X
y1, y2, y3 = Y
n_states = len(np.unique(Y))
# delete some rows to make it more fun
x1, y1 = x1[:, :-1], y1[:, :-1]
x2, y2 = x2[:-1], y2[:-1]
# generate graphs
X_ = [x1, x2, x3]
G = [make_grid_edges(x) for x in X_]
# reshape / flatten x and y
X_ = [x.reshape(-1, n_states) for x in X_]
Y = [y.ravel() for y in [y1, y2, y3]]
X = zip(X_, G)
clf.fit(X, Y)
Y_pred = clf.predict(X)
for y, y_pred in zip(Y, Y_pred):
assert_array_equal(y, y_pred)
示例10: test_edge_feature_latent_node_crf_no_latent
def test_edge_feature_latent_node_crf_no_latent():
# no latent nodes
# Test inference with different weights in different directions
X, Y = generate_blocks_multinomial(noise=2, n_samples=1, seed=1, size_x=10)
x, y = X[0], Y[0]
n_states = x.shape[-1]
edge_list = make_grid_edges(x, 4, return_lists=True)
edges = np.vstack(edge_list)
pw_horz = -1 * np.eye(n_states + 5)
xx, yy = np.indices(pw_horz.shape)
# linear ordering constraint horizontally
pw_horz[xx > yy] = 1
# high cost for unequal labels vertically
pw_vert = -1 * np.eye(n_states + 5)
pw_vert[xx != yy] = 1
pw_vert *= 10
# generate edge weights
edge_weights_horizontal = np.repeat(pw_horz[np.newaxis, :, :],
edge_list[0].shape[0], axis=0)
edge_weights_vertical = np.repeat(pw_vert[np.newaxis, :, :],
edge_list[1].shape[0], axis=0)
edge_weights = np.vstack([edge_weights_horizontal, edge_weights_vertical])
# do inference
# pad x for hidden states...
x_padded = -100 * np.ones((x.shape[0], x.shape[1], x.shape[2] + 5))
x_padded[:, :, :x.shape[2]] = x
res = lp_general_graph(-x_padded.reshape(-1, n_states + 5), edges,
edge_weights)
edge_features = edge_list_to_features(edge_list)
x = (x.reshape(-1, n_states), edges, edge_features, 0)
y = y.ravel()
for inference_method in get_installed(["lp"]):
# same inference through CRF inferface
crf = EdgeFeatureLatentNodeCRF(n_labels=3,
inference_method=inference_method,
n_edge_features=2, n_hidden_states=5)
w = np.hstack([np.eye(3).ravel(), -pw_horz.ravel(), -pw_vert.ravel()])
y_pred = crf.inference(x, w, relaxed=True)
assert_array_almost_equal(res[0], y_pred[0].reshape(-1, n_states + 5),
4)
assert_array_almost_equal(res[1], y_pred[1], 4)
assert_array_equal(y, np.argmax(y_pred[0], axis=-1))
for inference_method in get_installed(["lp", "ad3", "qpbo"]):
# again, this time discrete predictions only
crf = EdgeFeatureLatentNodeCRF(n_labels=3,
inference_method=inference_method,
n_edge_features=2, n_hidden_states=5)
w = np.hstack([np.eye(3).ravel(), -pw_horz.ravel(), -pw_vert.ravel()])
y_pred = crf.inference(x, w, relaxed=False)
assert_array_equal(y, y_pred)
示例11: test_energy_discrete
def test_energy_discrete():
for inference_method in get_installed(["qpbo", "ad3"]):
crf = EdgeFeatureGraphCRF(n_states=3,
inference_method=inference_method,
n_edge_features=2)
for i in xrange(10):
x = np.random.normal(size=(7, 8, 3))
edge_list = make_grid_edges(x, 4, return_lists=True)
edges = np.vstack(edge_list)
edge_features = edge_list_to_features(edge_list)
x = (x.reshape(-1, 3), edges, edge_features)
unary_params = np.random.normal(size=(3, 3))
pw1 = np.random.normal(size=(3, 3))
pw2 = np.random.normal(size=(3, 3))
w = np.hstack([unary_params.ravel(), pw1.ravel(), pw2.ravel()])
y_hat = crf.inference(x, w, relaxed=False)
energy = compute_energy(crf.get_unary_potentials(x, w),
crf.get_pairwise_potentials(x, w), edges,
y_hat)
psi = crf.psi(x, y_hat)
energy_svm = np.dot(psi, w)
assert_almost_equal(energy, energy_svm)
示例12: test_energy
def test_energy():
# make sure that energy as computed by ssvm is the same as by lp
np.random.seed(0)
for inference_method in ["lp", "ad3"]:
found_fractional = False
crf = EdgeFeatureGraphCRF(n_states=3,
inference_method=inference_method,
n_edge_features=2)
while not found_fractional:
x = np.random.normal(size=(7, 8, 3))
edge_list = make_grid_edges(x, 4, return_lists=True)
edges = np.vstack(edge_list)
edge_features = edge_list_to_features(edge_list)
x = (x.reshape(-1, 3), edges, edge_features)
unary_params = np.random.normal(size=(3, 3))
pw1 = np.random.normal(size=(3, 3))
pw2 = np.random.normal(size=(3, 3))
w = np.hstack([unary_params.ravel(), pw1.ravel(), pw2.ravel()])
res, energy = crf.inference(x, w, relaxed=True, return_energy=True)
found_fractional = np.any(np.max(res[0], axis=-1) != 1)
psi = crf.psi(x, res)
energy_svm = np.dot(psi, w)
assert_almost_equal(energy, -energy_svm)
if not found_fractional:
# exact discrete labels, test non-relaxed version
res, energy = crf.inference(x, w, relaxed=False,
return_energy=True)
psi = crf.psi(x, res)
energy_svm = np.dot(psi, w)
assert_almost_equal(energy, -energy_svm)
示例13: test_psi_discrete
def test_psi_discrete():
X, Y = toy.generate_blocks_multinomial(noise=2, n_samples=1, seed=1)
x, y = X[0], Y[0]
edge_list = make_grid_edges(x, 4, return_lists=True)
edges = np.vstack(edge_list)
edge_features = edge_list_to_features(edge_list)
x = (x.reshape(-1, 3), edges, edge_features)
y_flat = y.ravel()
for inference_method in ["lp", "ad3", "qpbo"]:
crf = EdgeFeatureGraphCRF(n_states=3,
inference_method=inference_method,
n_edge_features=2)
psi_y = crf.psi(x, y_flat)
assert_equal(psi_y.shape, (crf.size_psi,))
# first horizontal, then vertical
# we trust the unaries ;)
pw_psi_horz, pw_psi_vert = psi_y[crf.n_states *
crf.n_features:].reshape(
2, crf.n_states, crf.n_states)
xx, yy = np.indices(y.shape)
assert_array_equal(pw_psi_vert, np.diag([9 * 4, 9 * 4, 9 * 4]))
vert_psi = np.diag([10 * 3, 10 * 3, 10 * 3])
vert_psi[0, 1] = 10
vert_psi[1, 2] = 10
assert_array_equal(pw_psi_horz, vert_psi)
示例14: test_initialization
def test_initialization():
X, Y = generate_blocks_multinomial(noise=2, n_samples=1, seed=1)
x, y = X[0], Y[0]
n_states = x.shape[-1]
edge_list = make_grid_edges(x, 4, return_lists=True)
edges = np.vstack(edge_list)
edge_features = edge_list_to_features(edge_list)
x = (x.reshape(-1, n_states), edges, edge_features)
y = y.ravel()
crf = EdgeFeatureGraphCRF()
crf.initialize([x], [y])
assert_equal(crf.n_edge_features, 2)
assert_equal(crf.n_features, 3)
assert_equal(crf.n_states, 3)
crf = EdgeFeatureGraphCRF(n_states=3,
n_features=3,
n_edge_features=2)
# no-op
crf.initialize([x], [y])
crf = EdgeFeatureGraphCRF(n_states=4,
n_edge_features=2)
# incompatible
assert_raises(ValueError, crf.initialize, X=[x], Y=[y])
示例15: test_multinomial_blocks_directional_anti_symmetric
def test_multinomial_blocks_directional_anti_symmetric():
# testing cutting plane ssvm with directional CRF on easy multinomial
# dataset
X_, Y_ = toy.generate_blocks_multinomial(n_samples=10, noise=0.3, seed=0)
G = [make_grid_edges(x, return_lists=True) for x in X_]
edge_features = [edge_list_to_features(edge_list) for edge_list in G]
edges = [np.vstack(g) for g in G]
X = zip([x.reshape(-1, 3) for x in X_], edges, edge_features)
Y = [y.ravel() for y in Y_]
for inference_method in ['lp', 'ad3']:
crf = EdgeFeatureGraphCRF(n_states=3,
inference_method=inference_method,
n_edge_features=2,
symmetric_edge_features=[0],
antisymmetric_edge_features=[1])
clf = StructuredSVM(model=crf, max_iter=20, C=1000, verbose=10,
check_constraints=False, n_jobs=-1)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(Y, Y_pred)
pairwise_params = clf.w[-9 * 2:].reshape(2, 3, 3)
sym = pairwise_params[0]
antisym = pairwise_params[1]
print(sym)
print(antisym)
assert_array_equal(sym, sym.T)
assert_array_equal(antisym, -antisym.T)