本文整理汇总了Python中pystruct.models.LatentGridCRF类的典型用法代码示例。如果您正苦于以下问题:Python LatentGridCRF类的具体用法?Python LatentGridCRF怎么用?Python LatentGridCRF使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了LatentGridCRF类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_blocks_crf_directional
def test_blocks_crf_directional():
# test latent directional CRF on blocks
# test that all results are the same as equivalent LatentGridCRF
X, Y = toy.generate_blocks(n_samples=1)
x, y = X[0], Y[0]
pairwise_weights = np.array([0, 0, 0, -4, -4, 0, -4, -4, 0, 0])
unary_weights = np.repeat(np.eye(2), 2, axis=0)
w = np.hstack([unary_weights.ravel(), pairwise_weights])
pw_directional = np.array(
[0, 0, -4, -4, 0, 0, -4, -4, -4, -4, 0, 0, -4, -4, 0, 0, 0, 0, -4, -4, 0, 0, -4, -4, -4, -4, 0, 0, -4, -4, 0, 0]
)
w_directional = np.hstack([unary_weights.ravel(), pw_directional])
crf = LatentGridCRF(n_labels=2, n_states_per_label=2)
directional_crf = LatentDirectionalGridCRF(n_labels=2, n_states_per_label=2)
h_hat = crf.inference(x, w)
h_hat_d = directional_crf.inference(x, w_directional)
assert_array_equal(h_hat, h_hat_d)
h = crf.latent(x, y, w)
h_d = directional_crf.latent(x, y, w_directional)
assert_array_equal(h, h_d)
h_hat = crf.loss_augmented_inference(x, y, w)
h_hat_d = directional_crf.loss_augmented_inference(x, y, w_directional)
assert_array_equal(h_hat, h_hat_d)
psi = crf.psi(x, h_hat)
psi_d = directional_crf.psi(x, h_hat)
assert_array_equal(np.dot(psi, w), np.dot(psi_d, w_directional))
示例2: test_continuous_y
def test_continuous_y():
for inference_method in ["lp", "ad3"]:
X, Y = toy.generate_blocks(n_samples=1)
x, y = X[0], Y[0]
w = np.array([1, 0, 0, 1, 0, -4, 0]) # unary # pairwise
crf = LatentGridCRF(n_labels=2, n_states_per_label=1, inference_method=inference_method)
psi = crf.psi(x, y)
y_cont = np.zeros_like(x)
gx, gy = np.indices(x.shape[:-1])
y_cont[gx, gy, y] = 1
# need to generate edge marginals
vert = np.dot(y_cont[1:, :, :].reshape(-1, 2).T, y_cont[:-1, :, :].reshape(-1, 2))
# horizontal edges
horz = np.dot(y_cont[:, 1:, :].reshape(-1, 2).T, y_cont[:, :-1, :].reshape(-1, 2))
pw = vert + horz
psi_cont = crf.psi(x, (y_cont, pw))
assert_array_almost_equal(psi, psi_cont)
const = find_constraint(crf, x, y, w, relaxed=False)
const_cont = find_constraint(crf, x, y, w, relaxed=True)
# dpsi and loss are equal:
assert_array_almost_equal(const[1], const_cont[1])
assert_almost_equal(const[2], const_cont[2])
# returned y_hat is one-hot version of other
assert_array_equal(const[0], np.argmax(const_cont[0][0], axis=-1))
# test loss:
assert_equal(crf.loss(y, const[0]), crf.continuous_loss(y, const_cont[0][0]))
示例3: test_with_crosses_bad_init
def test_with_crosses_bad_init():
# use less perfect initialization
rnd = np.random.RandomState(0)
X, Y = toy.generate_crosses(n_samples=20, noise=5, n_crosses=1,
total_size=8)
X_test, Y_test = X[10:], Y[10:]
X, Y = X[:10], Y[:10]
n_labels = 2
crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=2)
H_init = crf.init_latent(X, Y)
mask = rnd.uniform(size=H_init.shape) > .7
H_init[mask] = 2 * (H_init[mask] / 2)
one_slack = OneSlackSSVM(crf, inactive_threshold=1e-8, cache_tol=.0001,
inference_cache=50, max_iter=10000)
n_slack = NSlackSSVM(crf)
subgradient = SubgradientSSVM(crf, max_iter=150, learning_rate=.01,
momentum=0)
for base_ssvm in [one_slack, n_slack, subgradient]:
base_ssvm.C = 10. ** 2
clf = LatentSSVM(base_ssvm)
clf.fit(X, Y, H_init=H_init)
Y_pred = clf.predict(X)
assert_array_equal(np.array(Y_pred), Y)
# test that score is not always 1
assert_true(.98 < clf.score(X_test, Y_test) < 1)
示例4: test_switch_to_ad3
def test_switch_to_ad3():
# smoketest only
# test if switching between qpbo and ad3 works inside latent svm
# use less perfect initialization
if not get_installed(['qpbo']) or not get_installed(['ad3']):
return
X, Y = generate_crosses(n_samples=20, noise=5, n_crosses=1, total_size=8)
X_test, Y_test = X[10:], Y[10:]
X, Y = X[:10], Y[:10]
crf = LatentGridCRF(n_states_per_label=2,
inference_method='qpbo')
crf.initialize(X, Y)
H_init = crf.init_latent(X, Y)
np.random.seed(0)
mask = np.random.uniform(size=H_init.shape) > .7
H_init[mask] = 2 * (H_init[mask] / 2)
base_ssvm = OneSlackSSVM(crf, inactive_threshold=1e-8, cache_tol=.0001,
inference_cache=50, max_iter=10000,
switch_to=('ad3', {'branch_and_bound': True}),
C=10. ** 3)
clf = LatentSSVM(base_ssvm)
clf.fit(X, Y, H_init=H_init)
assert_equal(clf.model.inference_method[0], 'ad3')
Y_pred = clf.predict(X)
assert_array_equal(np.array(Y_pred), Y)
# test that score is not always 1
assert_true(.98 < clf.score(X_test, Y_test) < 1)
示例5: test_with_crosses_bad_init
def test_with_crosses_bad_init():
# use less perfect initialization
X, Y = toy.generate_crosses(n_samples=10, noise=5, n_crosses=1,
total_size=8)
n_labels = 2
crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=2,
inference_method='lp')
H_init = crf.init_latent(X, Y)
mask = np.random.uniform(size=H_init.shape) > .7
H_init[mask] = 2 * (H_init[mask] / 2)
one_slack = OneSlackSSVM(crf, inactive_threshold=1e-8, cache_tol=.0001,
inference_cache=50, max_iter=10000)
n_slack = StructuredSVM(crf)
subgradient = SubgradientSSVM(crf, max_iter=150, learning_rate=5)
for base_ssvm in [one_slack, n_slack, subgradient]:
base_ssvm.C = 10. ** 3
base_ssvm.n_jobs = -1
clf = LatentSSVM(base_ssvm)
clf.fit(X, Y, H_init=H_init)
Y_pred = clf.predict(X)
assert_array_equal(np.array(Y_pred), Y)
示例6: test_latent_consistency_grid
def test_latent_consistency_grid():
crf = LatentGridCRF(n_labels=2, n_features=2, n_states_per_label=2)
for i in range(10):
w = np.random.normal(size=18)
y = np.random.randint(2, size=(4, 4))
x = np.random.normal(size=(4, 4, 2))
h = crf.latent(x, y, w)
assert_array_equal(h // 2, y)
示例7: test_blocks_crf_unaries
def test_blocks_crf_unaries():
X, Y = toy.generate_blocks(n_samples=1)
x, y = X[0], Y[0]
unary_weights = np.repeat(np.eye(2), 2, axis=0)
pairwise_weights = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
w = np.hstack([unary_weights.ravel(), pairwise_weights])
crf = LatentGridCRF(n_labels=2, n_states_per_label=2)
h_hat = crf.inference(x, w)
assert_array_equal(h_hat / 2, np.argmax(x, axis=-1))
示例8: test_loss_augmented_inference_exhaustive_grid
def test_loss_augmented_inference_exhaustive_grid():
crf = LatentGridCRF(n_labels=2, n_features=2, n_states_per_label=2)
for i in range(10):
w = np.random.normal(size=18)
y = np.random.randint(2, size=(2, 2))
x = np.random.normal(size=(2, 2, 2))
h_hat = crf.loss_augmented_inference(x, y * 2, w)
h = exhaustive_loss_augmented_inference(crf, x, y * 2, w)
assert_array_equal(h, h_hat)
示例9: test_latent_consistency_zero_pw_grid
def test_latent_consistency_zero_pw_grid():
crf = LatentGridCRF(n_labels=2, n_features=2, n_states_per_label=2)
for i in xrange(10):
w = np.zeros(18)
w[:8] = np.random.normal(size=8)
y = np.random.randint(2, size=(5, 5))
x = np.random.normal(size=(5, 5, 2))
h = crf.latent(x, y, w)
assert_array_equal(h / 2, y)
示例10: test_blocks_crf
def test_blocks_crf():
X, Y = toy.generate_blocks(n_samples=1)
x, y = X[0], Y[0]
pairwise_weights = np.array([0, 0, 0, -4, -4, 0, -4, -4, 0, 0])
unary_weights = np.repeat(np.eye(2), 2, axis=0)
w = np.hstack([unary_weights.ravel(), pairwise_weights])
crf = LatentGridCRF(n_labels=2, n_states_per_label=2)
h_hat = crf.inference(x, w)
assert_array_equal(y, h_hat / 2)
h = crf.latent(x, y, w)
assert_equal(crf.loss(h, h_hat), 0)
示例11: main
def main():
X, Y = toy.generate_crosses(n_samples=20, noise=5, n_crosses=1,
total_size=8)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.5)
n_labels = len(np.unique(Y_train))
crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=[1, 2],
inference_method='lp')
#clf = LatentSSVM(model=crf, max_iter=500, C=1000., verbose=2,
#check_constraints=True, n_jobs=-1, break_on_bad=True,
#base_svm='1-slack', inference_cache=20, tol=.1)
clf = LatentSubgradientSSVM(
model=crf, max_iter=500, C=1000., verbose=2,
n_jobs=-1, learning_rate=0.1, show_loss_every=10)
clf.fit(X_train, Y_train)
#for X_, Y_, H, name in [[X_train, Y_train, clf.H_init_, "train"],
#[X_test, Y_test, [None] * len(X_test), "test"]]:
for X_, Y_, H, name in [[X_train, Y_train, [None] * len(X_test), "train"],
[X_test, Y_test, [None] * len(X_test), "test"]]:
Y_pred = clf.predict(X_)
i = 0
loss = 0
for x, y, h_init, y_pred in zip(X_, Y_, H, Y_pred):
loss += np.sum(y != y_pred)
fig, ax = plt.subplots(3, 2)
ax[0, 0].matshow(y, vmin=0, vmax=crf.n_labels - 1)
ax[0, 0].set_title("ground truth")
ax[0, 1].matshow(np.argmax(x, axis=-1),
vmin=0, vmax=crf.n_labels - 1)
ax[0, 1].set_title("unaries only")
if h_init is None:
ax[1, 0].set_visible(False)
else:
ax[1, 0].matshow(h_init, vmin=0, vmax=crf.n_states - 1)
ax[1, 0].set_title("latent initial")
ax[1, 1].matshow(crf.latent(x, y, clf.w),
vmin=0, vmax=crf.n_states - 1)
ax[1, 1].set_title("latent final")
ax[2, 0].matshow(crf.inference(x, clf.w),
vmin=0, vmax=crf.n_states - 1)
ax[2, 0].set_title("prediction latent")
ax[2, 1].matshow(y_pred,
vmin=0, vmax=crf.n_labels - 1)
ax[2, 1].set_title("prediction")
for a in ax.ravel():
a.set_xticks(())
a.set_yticks(())
fig.savefig("data_%s_%03d.png" % (name, i), bbox_inches="tight")
i += 1
print("loss %s set: %f" % (name, loss))
print(clf.w)
示例12: test_switch_to_ad3
def test_switch_to_ad3():
# smoketest only
# test if switching between qpbo and ad3 works inside latent svm
# use less perfect initialization
if not get_installed(["qpbo"]) or not get_installed(["ad3"]):
return
X, Y = generate_crosses(n_samples=20, noise=5, n_crosses=1, total_size=8)
X_test, Y_test = X[10:], Y[10:]
X, Y = X[:10], Y[:10]
crf = LatentGridCRF(n_states_per_label=2, inference_method="qpbo")
crf.initialize(X, Y)
H_init = crf.init_latent(X, Y)
np.random.seed(0)
mask = np.random.uniform(size=H_init.shape) > 0.7
H_init[mask] = 2 * (H_init[mask] / 2)
base_ssvm = OneSlackSSVM(
crf,
inactive_threshold=1e-8,
cache_tol=0.0001,
inference_cache=50,
max_iter=10000,
switch_to=("ad3", {"branch_and_bound": True}),
C=10.0 ** 3,
)
clf = LatentSSVM(base_ssvm)
# evil hackery to get rid of ad3 output
try:
devnull = open("/dev/null", "w")
oldstdout_fno = os.dup(sys.stdout.fileno())
os.dup2(devnull.fileno(), 1)
replaced_stdout = True
except:
replaced_stdout = False
clf.fit(X, Y, H_init=H_init)
if replaced_stdout:
os.dup2(oldstdout_fno, 1)
assert_equal(clf.model.inference_method[0], "ad3")
Y_pred = clf.predict(X)
assert_array_equal(np.array(Y_pred), Y)
# test that score is not always 1
assert_true(0.98 < clf.score(X_test, Y_test) < 1)
示例13: test_continuous_y
def test_continuous_y():
for inference_method in get_installed(["lp", "ad3"]):
X, Y = generate_blocks(n_samples=1)
x, y = X[0], Y[0]
w = np.array([1, 0, # unary
0, 1,
0, # pairwise
-4, 0])
crf = LatentGridCRF(n_labels=2, n_features=2, n_states_per_label=1,
inference_method=inference_method)
joint_feature = crf.joint_feature(x, y)
y_cont = np.zeros_like(x)
gx, gy = np.indices(x.shape[:-1])
y_cont[gx, gy, y] = 1
# need to generate edge marginals
vert = np.dot(y_cont[1:, :, :].reshape(-1, 2).T,
y_cont[:-1, :, :].reshape(-1, 2))
# horizontal edges
horz = np.dot(y_cont[:, 1:, :].reshape(-1, 2).T,
y_cont[:, :-1, :].reshape(-1, 2))
pw = vert + horz
joint_feature_cont = crf.joint_feature(x, (y_cont, pw))
assert_array_almost_equal(joint_feature, joint_feature_cont, 4)
const = find_constraint(crf, x, y, w, relaxed=False)
const_cont = find_constraint(crf, x, y, w, relaxed=True)
# djoint_feature and loss are equal:
assert_array_almost_equal(const[1], const_cont[1], 4)
assert_almost_equal(const[2], const_cont[2], 4)
if isinstance(const_cont[0], tuple):
# returned y_hat is one-hot version of other
assert_array_equal(const[0], np.argmax(const_cont[0][0], axis=-1))
# test loss:
assert_almost_equal(crf.loss(y, const[0]),
crf.continuous_loss(y, const_cont[0][0]), 4)
示例14: test_with_crosses_bad_init
def test_with_crosses_bad_init():
# use less perfect initialization
rnd = np.random.RandomState(0)
X, Y = generate_crosses(n_samples=20, noise=5, n_crosses=1, total_size=8)
X_test, Y_test = X[10:], Y[10:]
X, Y = X[:10], Y[:10]
crf = LatentGridCRF(n_states_per_label=2)
crf.initialize(X, Y)
H_init = crf.init_latent(X, Y)
mask = rnd.uniform(size=H_init.shape) > 0.7
H_init[mask] = 2 * (H_init[mask] / 2)
one_slack_ssvm = OneSlackSSVM(crf, inactive_threshold=1e-8, cache_tol=0.0001, inference_cache=50, C=100)
clf = LatentSSVM(one_slack_ssvm)
clf.fit(X, Y, H_init=H_init)
Y_pred = clf.predict(X)
assert_array_equal(np.array(Y_pred), Y)
# test that score is not always 1
assert_true(0.98 < clf.score(X_test, Y_test) < 1)
示例15: test_objective
def test_objective():
# test that SubgradientLatentSSVM does the same as SubgradientSVM,
# in particular that it has the same loss, if there are no latent states.
X, Y = generate_blocks_multinomial(n_samples=10, noise=.3, seed=1)
inference_method = get_installed(["qpbo", "ad3", "lp"])[0]
n_labels = 3
crfl = LatentGridCRF(n_labels=n_labels, n_states_per_label=1,
inference_method=inference_method)
clfl = SubgradientLatentSSVM(model=crfl, max_iter=20, C=10.,
learning_rate=0.001, momentum=0.98)
crfl.initialize(X, Y)
clfl.w = np.zeros(crfl.size_joint_feature) # this disables random init
clfl.fit(X, Y)
crf = GridCRF(n_states=n_labels, inference_method=inference_method)
clf = SubgradientSSVM(model=crf, max_iter=20, C=10., learning_rate=0.001,
momentum=0.98)
clf.fit(X, Y)
assert_array_almost_equal(clf.w, clfl.w)
assert_almost_equal(clf.objective_curve_[-1], clfl.objective_curve_[-1])
assert_array_equal(clf.predict(X), clfl.predict(X))
assert_array_equal(clf.predict(X), Y)