本文整理汇总了Python中pystruct.models.GridCRF类的典型用法代码示例。如果您正苦于以下问题:Python GridCRF类的具体用法?Python GridCRF怎么用?Python GridCRF使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了GridCRF类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_binary_grid_unaries
def test_binary_grid_unaries():
# test handling on unaries for binary grid CRFs
for ds in binary:
X, Y = ds(n_samples=1)
x, y = X[0], Y[0]
for inference_method in get_installed():
# dai is to expensive
crf = GridCRF(inference_method=inference_method)
crf.initialize(X, Y)
w_unaries_only = np.zeros(7)
w_unaries_only[:4] = np.eye(2).ravel()
# test that inference with unaries only is the
# same as argmax
inf_unaries = crf.inference(x, w_unaries_only)
assert_array_equal(inf_unaries, np.argmax(x, axis=2),
"Wrong unary inference for %s"
% inference_method)
try:
assert(np.mean(inf_unaries == y) > 0.5)
except:
print(ds)
# check that the right thing happens on noise-free data
X, Y = ds(n_samples=1, noise=0)
inf_unaries = crf.inference(X[0], w_unaries_only)
assert_array_equal(inf_unaries, Y[0],
"Wrong unary result for %s"
% inference_method)
示例2: test_binary_grid_unaries
def test_binary_grid_unaries():
# test handling on unaries for binary grid CRFs
for ds in binary:
X, Y = ds(n_samples=1)
x, y = X[0], Y[0]
for inference_method in get_installed():
#NOTE: ad3+ fails because it requires a different data structure
if inference_method == 'ad3+': continue
crf = GridCRF(inference_method=inference_method)
crf.initialize(X, Y)
w_unaries_only = np.zeros(7)
w_unaries_only[:4] = np.eye(2).ravel()
# test that inference with unaries only is the
# same as argmax
inf_unaries = crf.inference(x, w_unaries_only)
assert_array_equal(inf_unaries, np.argmax(x, axis=2),
"Wrong unary inference for %s"
% inference_method)
assert(np.mean(inf_unaries == y) > 0.5)
# check that the right thing happens on noise-free data
X, Y = ds(n_samples=1, noise=0)
inf_unaries = crf.inference(X[0], w_unaries_only)
assert_array_equal(inf_unaries, Y[0],
"Wrong unary result for %s"
% inference_method)
示例3: test_binary_blocks_crf_n8_lp
def test_binary_blocks_crf_n8_lp():
X, Y = generate_blocks(n_samples=1, noise=1)
x, y = X[0], Y[0]
w = np.array([1, 0, 0, 1, 1, -1.4, 1]) # unary # pairwise
crf = GridCRF(neighborhood=8)
crf.initialize(X, Y)
y_hat = crf.inference(x, w)
assert_array_equal(y, y_hat)
示例4: test_max_product_multinomial_crf
def test_max_product_multinomial_crf():
X, Y = generate_blocks_multinomial(n_samples=1)
x, y = X[0], Y[0]
w = np.array([1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.4, -0.3, 0.3, -0.5, -0.1, 0.3]) # unary # pairwise
crf = GridCRF(inference_method="max-product")
crf.initialize(X, Y)
y_hat = crf.inference(x, w)
assert_array_equal(y, y_hat)
示例5: test_max_product_binary_blocks
def test_max_product_binary_blocks():
X, Y = generate_blocks(n_samples=1)
x, y = X[0], Y[0]
w = np.array([1, 0, 0, 1, 0, -4, 0]) # unary # pairwise
crf = GridCRF(inference_method="max-product")
crf.initialize(X, Y)
y_hat = crf.inference(x, w)
assert_array_equal(y, y_hat)
示例6: test_binary_blocks_crf
def test_binary_blocks_crf():
X, Y = generate_blocks(n_samples=1)
x, y = X[0], Y[0]
w = np.array([1, 0, 0, 1, 0, -4, 0]) # unary # pairwise
for inference_method in get_installed(["dai", "qpbo", "lp", "ad3", "ogm"]):
crf = GridCRF(inference_method=inference_method)
crf.initialize(X, Y)
y_hat = crf.inference(x, w)
assert_array_equal(y, y_hat)
示例7: test_blocks_multinomial_crf
def test_blocks_multinomial_crf():
X, Y = generate_blocks_multinomial(n_samples=1, size_x=9, seed=0)
x, y = X[0], Y[0]
w = np.array([1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.4, -0.3, 0.3, -0.5, -0.1, 0.3]) # unaryA # pairwise
for inference_method in get_installed():
crf = GridCRF(inference_method=inference_method)
crf.initialize(X, Y)
y_hat = crf.inference(x, w)
assert_array_equal(y, y_hat)
示例8: test_binary_blocks_crf_n8_lp
def test_binary_blocks_crf_n8_lp():
X, Y = toy.generate_blocks(n_samples=1, noise=1)
x, y = X[0], Y[0]
w = np.array([1, 0, # unary
0, 1,
1, # pairwise
-1.4, 1])
crf = GridCRF(inference_method="lp", neighborhood=8)
y_hat = crf.inference(x, w)
assert_array_equal(y, y_hat)
示例9: test_binary_blocks_crf
def test_binary_blocks_crf():
X, Y = toy.generate_blocks(n_samples=1)
x, y = X[0], Y[0]
w = np.array([1, 0, # unary
0, 1,
0, # pairwise
-4, 0])
for inference_method in ['dai', 'qpbo', 'lp', 'ad3']:
crf = GridCRF(inference_method=inference_method)
y_hat = crf.inference(x, w)
assert_array_equal(y, y_hat)
示例10: test_energy_lp
def test_energy_lp():
# make sure that energy as computed by ssvm is the same as by lp
np.random.seed(0)
found_fractional = False
for inference_method in get_installed(["lp", "ad3"]):
crf = GridCRF(n_states=3, n_features=4, inference_method=inference_method)
while not found_fractional:
x = np.random.normal(size=(2, 2, 4))
w = np.random.uniform(size=crf.size_joint_feature)
inf_res, energy_lp = crf.inference(x, w, relaxed=True, return_energy=True)
assert_almost_equal(energy_lp, -np.dot(w, crf.joint_feature(x, inf_res)))
found_fractional = np.any(np.max(inf_res[0], axis=-1) != 1)
示例11: test_loss_augmentation
def test_loss_augmentation():
X, Y = toy.generate_blocks(n_samples=1)
x, y = X[0], Y[0]
w = np.array([1, 0, # unary
0, 1,
0, # pairwise
-4, 0])
crf = GridCRF(inference_method='lp')
y_hat, energy = crf.loss_augmented_inference(x, y, w, return_energy=True)
assert_almost_equal(energy + crf.loss(y, y_hat),
-np.dot(w, crf.psi(x, y_hat)))
示例12: test_binary_blocks_crf
def test_binary_blocks_crf():
X, Y = generate_blocks(n_samples=1)
x, y = X[0], Y[0]
w = np.array([1, 0, # unary
0, 1,
0, # pairwise
-4, 0])
for inference_method in get_installed(['dai', 'qpbo', 'lp', 'ad3', 'ogm']):
crf = GridCRF(inference_method=inference_method)
crf.initialize(X, Y)
y_hat = crf.inference(x, w)
assert_array_equal(y, y_hat)
示例13: test_blocks_multinomial_crf
def test_blocks_multinomial_crf():
X, Y = toy.generate_blocks_multinomial(n_samples=1)
x, y = X[0], Y[0]
w = np.array([1., 0., 0., # unaryA
0., 1., 0.,
0., 0., 1.,
.4, # pairwise
-.3, .3,
-.5, -.1, .3])
for inference_method in ['dai', 'qpbo', 'lp', 'ad3']:
crf = GridCRF(n_states=3, inference_method=inference_method)
y_hat = crf.inference(x, w)
assert_array_equal(y, y_hat)
示例14: test_blocks_multinomial_crf
def test_blocks_multinomial_crf():
X, Y = toy.generate_blocks_multinomial(n_samples=1, size_x=9, seed=0)
x, y = X[0], Y[0]
w = np.array([1., 0., 0., # unaryA
0., 1., 0.,
0., 0., 1.,
.4, # pairwise
-.3, .3,
-.5, -.1, .3])
for inference_method in get_installed():
crf = GridCRF(n_states=3, inference_method=inference_method)
y_hat = crf.inference(x, w)
assert_array_equal(y, y_hat)
示例15: test_binary_crf_exhaustive
def test_binary_crf_exhaustive():
# tests qpbo inference against brute force
# on random data / weights
np.random.seed(0)
for i in xrange(10):
x = np.random.uniform(-1, 1, size=(3, 2))
x = np.dstack([-x, np.zeros_like(x)]).copy()
crf = GridCRF(n_features=2, n_states=2)
w = np.random.uniform(-1, 1, size=7)
# check map inference
y_hat = crf.inference(x, w)
y_ex = exhaustive_inference(crf, x, w)
assert_array_equal(y_hat, y_ex)