当前位置: 首页>>代码示例>>Python>>正文


Python datasets.generate_blocks_multinomial函数代码示例

本文整理汇总了Python中pystruct.datasets.generate_blocks_multinomial函数的典型用法代码示例。如果您正苦于以下问题:Python generate_blocks_multinomial函数的具体用法?Python generate_blocks_multinomial怎么用?Python generate_blocks_multinomial使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了generate_blocks_multinomial函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_initialization

def test_initialization():
    X, Y = generate_blocks_multinomial(noise=2, n_samples=1, seed=1)
    x, y = X[0], Y[0]
    n_states = x.shape[-1]

    edge_list = make_grid_edges(x, 4, return_lists=True)
    edges = np.vstack(edge_list)

    edge_features = edge_list_to_features(edge_list)
    x = (x.reshape(-1, n_states), edges, edge_features)
    y = y.ravel()
    crf = EdgeFeatureGraphCRF()
    crf.initialize([x], [y])
    assert_equal(crf.n_edge_features, 2)
    assert_equal(crf.n_features, 3)
    assert_equal(crf.n_states, 3)

    crf = EdgeFeatureGraphCRF(n_states=3,
                              n_features=3,
                              n_edge_features=2)
    # no-op
    crf.initialize([x], [y])

    crf = EdgeFeatureGraphCRF(n_states=4,
                              n_edge_features=2)
    # incompatible
    assert_raises(ValueError, crf.initialize, X=[x], Y=[y])
开发者ID:DATAQC,项目名称:pystruct,代码行数:27,代码来源:test_edge_feature_graph_crf.py

示例2: test_joint_feature_continuous

def test_joint_feature_continuous():
    # FIXME
    # first make perfect prediction, including pairwise part
    X, Y = generate_blocks_multinomial(noise=2, n_samples=1, seed=1)
    x, y = X[0], Y[0]
    n_states = x.shape[-1]

    pw_horz = -1 * np.eye(n_states)
    xx, yy = np.indices(pw_horz.shape)
    # linear ordering constraint horizontally
    pw_horz[xx > yy] = 1

    # high cost for unequal labels vertically
    pw_vert = -1 * np.eye(n_states)
    pw_vert[xx != yy] = 1
    pw_vert *= 10

    # create crf, assemble weight, make prediction
    for inference_method in get_installed(["lp", "ad3"]):
        crf = DirectionalGridCRF(inference_method=inference_method)
        crf.initialize(X, Y)
        w = np.hstack([np.eye(3).ravel(), -pw_horz.ravel(), -pw_vert.ravel()])
        y_pred = crf.inference(x, w, relaxed=True)

        # compute joint_feature for prediction
        joint_feature_y = crf.joint_feature(x, y_pred)
        assert_equal(joint_feature_y.shape, (crf.size_joint_feature,))
开发者ID:DATAQC,项目名称:pystruct,代码行数:27,代码来源:test_directional_crf.py

示例3: test_multinomial_blocks_frankwolfe_batch

def test_multinomial_blocks_frankwolfe_batch():
    X, Y = generate_blocks_multinomial(n_samples=10, noise=0.3, seed=0)
    crf = GridCRF(inference_method='qpbo')
    clf = FrankWolfeSSVM(model=crf, C=1, max_iter=500, batch_mode=True)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
开发者ID:pystruct,项目名称:pystruct,代码行数:7,代码来源:test_frankwolfe_svm.py

示例4: test_edge_feature_latent_node_crf_no_latent

def test_edge_feature_latent_node_crf_no_latent():
    # no latent nodes

    # Test inference with different weights in different directions

    X, Y = generate_blocks_multinomial(noise=2, n_samples=1, seed=1, size_x=10)
    x, y = X[0], Y[0]
    n_states = x.shape[-1]

    edge_list = make_grid_edges(x, 4, return_lists=True)
    edges = np.vstack(edge_list)

    pw_horz = -1 * np.eye(n_states + 5)
    xx, yy = np.indices(pw_horz.shape)
    # linear ordering constraint horizontally
    pw_horz[xx > yy] = 1

    # high cost for unequal labels vertically
    pw_vert = -1 * np.eye(n_states + 5)
    pw_vert[xx != yy] = 1
    pw_vert *= 10

    # generate edge weights
    edge_weights_horizontal = np.repeat(pw_horz[np.newaxis, :, :],
                                        edge_list[0].shape[0], axis=0)
    edge_weights_vertical = np.repeat(pw_vert[np.newaxis, :, :],
                                      edge_list[1].shape[0], axis=0)
    edge_weights = np.vstack([edge_weights_horizontal, edge_weights_vertical])

    # do inference
    # pad x for hidden states...
    x_padded = -100 * np.ones((x.shape[0], x.shape[1], x.shape[2] + 5))
    x_padded[:, :, :x.shape[2]] = x
    res = lp_general_graph(-x_padded.reshape(-1, n_states + 5), edges,
                           edge_weights)

    edge_features = edge_list_to_features(edge_list)
    x = (x.reshape(-1, n_states), edges, edge_features, 0)
    y = y.ravel()

    for inference_method in get_installed(["lp"]):
        # same inference through CRF inferface
        crf = EdgeFeatureLatentNodeCRF(n_labels=3,
                                       inference_method=inference_method,
                                       n_edge_features=2, n_hidden_states=5)
        w = np.hstack([np.eye(3).ravel(), -pw_horz.ravel(), -pw_vert.ravel()])
        y_pred = crf.inference(x, w, relaxed=True)
        assert_array_almost_equal(res[0], y_pred[0].reshape(-1, n_states + 5),
                                  4)
        assert_array_almost_equal(res[1], y_pred[1], 4)
        assert_array_equal(y, np.argmax(y_pred[0], axis=-1))

    for inference_method in get_installed(["lp", "ad3", "qpbo"]):
        # again, this time discrete predictions only
        crf = EdgeFeatureLatentNodeCRF(n_labels=3,
                                       inference_method=inference_method,
                                       n_edge_features=2, n_hidden_states=5)
        w = np.hstack([np.eye(3).ravel(), -pw_horz.ravel(), -pw_vert.ravel()])
        y_pred = crf.inference(x, w, relaxed=False)
        assert_array_equal(y, y_pred)
开发者ID:UIKit0,项目名称:pystruct,代码行数:60,代码来源:test_latent_node_crf.py

示例5: test_one_slack_constraint_caching

def test_one_slack_constraint_caching():
    # testing cutting plane ssvm on easy multinomial dataset
    X, Y = generate_blocks_multinomial(n_samples=10, noise=0.5, seed=0,
                                       size_x=9)
    n_labels = len(np.unique(Y))
    exact_inference = get_installed([('ad3', {'branch_and_bound': True}), "lp"])[0]
    crf = GridCRF(n_states=n_labels, inference_method=exact_inference)
    clf = OneSlackSSVM(model=crf, max_iter=150, C=1,
                       check_constraints=True, break_on_bad=True,
                       inference_cache=50, inactive_window=0)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
    assert_equal(len(clf.inference_cache_), len(X))
    # there should be 13 constraints, which are less than the 94 iterations
    # that are done
    # check that we didn't change the behavior of how we construct the cache
    constraints_per_sample = [len(cache) for cache in clf.inference_cache_]
    if exact_inference == "lp":
        assert_equal(len(clf.inference_cache_[0]), 18)
        assert_equal(np.max(constraints_per_sample), 18)
        assert_equal(np.min(constraints_per_sample), 18)
    else:
        assert_equal(len(clf.inference_cache_[0]), 13)
        assert_equal(np.max(constraints_per_sample), 20)
        assert_equal(np.min(constraints_per_sample), 11)
开发者ID:pystruct,项目名称:pystruct,代码行数:26,代码来源:test_one_slack_ssvm.py

示例6: test_psi_continuous

def test_psi_continuous():
    # FIXME
    # first make perfect prediction, including pairwise part
    X, Y = generate_blocks_multinomial(noise=2, n_samples=1, seed=1)
    x, y = X[0], Y[0]
    n_states = x.shape[-1]
    edge_list = make_grid_edges(x, 4, return_lists=True)
    edges = np.vstack(edge_list)
    edge_features = edge_list_to_features(edge_list)
    x = (x.reshape(-1, 3), edges, edge_features)
    y = y.ravel()

    pw_horz = -1 * np.eye(n_states)
    xx, yy = np.indices(pw_horz.shape)
    # linear ordering constraint horizontally
    pw_horz[xx > yy] = 1

    # high cost for unequal labels vertically
    pw_vert = -1 * np.eye(n_states)
    pw_vert[xx != yy] = 1
    pw_vert *= 10

    # create crf, assemble weight, make prediction
    for inference_method in get_installed(["lp", "ad3"]):
        crf = EdgeFeatureGraphCRF(inference_method=inference_method)
        w = np.hstack([np.eye(3).ravel(), -pw_horz.ravel(), -pw_vert.ravel()])
        crf.initialize([x], [y])
        y_pred = crf.inference(x, w, relaxed=True)

        # compute psi for prediction
        psi_y = crf.psi(x, y_pred)
        assert_equal(psi_y.shape, (crf.size_psi,))
开发者ID:DerThorsten,项目名称:pystruct,代码行数:32,代码来源:test_edge_feature_graph_crf.py

示例7: test_joint_feature_discrete

def test_joint_feature_discrete():
    """
    Testing with a single type of nodes. Must de aw well as EdgeFeatureGraphCRF
    """
    X, Y = generate_blocks_multinomial(noise=2, n_samples=1, seed=1)
    x, y = X[0], Y[0]
    edge_list = make_grid_edges(x, 4, return_lists=True)
    edges = np.vstack(edge_list)
    edge_features = edge_list_to_features(edge_list)
    x = ([x.reshape(-1, 3)], [edges], [edge_features])
    y_flat = y.ravel()
    #for inference_method in get_installed(["lp", "ad3", "qpbo"]):
    if True:
        crf = NodeTypeEdgeFeatureGraphCRF(1, [3], [3], [[2]])
        joint_feature_y = crf.joint_feature(x, y_flat)
        assert_equal(joint_feature_y.shape, (crf.size_joint_feature,))
        # first horizontal, then vertical
        # we trust the unaries ;)
        n_states = crf.l_n_states[0]
        n_features = crf.l_n_features[0]
        pw_joint_feature_horz, pw_joint_feature_vert = joint_feature_y[n_states *
                                         n_features:].reshape(
                                             2, n_states, n_states)
        assert_array_equal(pw_joint_feature_vert, np.diag([9 * 4, 9 * 4, 9 * 4]))
        vert_joint_feature = np.diag([10 * 3, 10 * 3, 10 * 3])
        vert_joint_feature[0, 1] = 10
        vert_joint_feature[1, 2] = 10
        assert_array_equal(pw_joint_feature_horz, vert_joint_feature)
开发者ID:pystruct,项目名称:pystruct,代码行数:28,代码来源:test_node_type_edge_feature_graph_crf.py

示例8: test_switch_to_ad3

def test_switch_to_ad3():
    # test if switching between qpbo and ad3 works

    if not get_installed(['qpbo']) or not get_installed(['ad3']):
        return
    X, Y = generate_blocks_multinomial(n_samples=5, noise=1.5, seed=0)
    crf = GridCRF(n_states=3, inference_method='qpbo')

    ssvm = NSlackSSVM(crf, max_iter=10000)

    ssvm_with_switch = NSlackSSVM(crf, max_iter=10000, switch_to=('ad3'))
    ssvm.fit(X, Y)
    ssvm_with_switch.fit(X, Y)
    assert_equal(ssvm_with_switch.model.inference_method, 'ad3')
    # we check that the dual is higher with ad3 inference
    # as it might use the relaxation, that is pretty much guraranteed
    assert_greater(ssvm_with_switch.objective_curve_[-1],
                   ssvm.objective_curve_[-1])
    print(ssvm_with_switch.objective_curve_[-1], ssvm.objective_curve_[-1])

    # test that convergence also results in switch
    ssvm_with_switch = NSlackSSVM(crf, max_iter=10000, switch_to=('ad3'),
                                  tol=10)
    ssvm_with_switch.fit(X, Y)
    assert_equal(ssvm_with_switch.model.inference_method, 'ad3')
开发者ID:DerThorsten,项目名称:pystruct,代码行数:25,代码来源:test_n_slack_ssvm.py

示例9: test_multinomial_blocks

def test_multinomial_blocks():
    X, Y = generate_blocks_multinomial(n_samples=10, noise=0.3, seed=0)
    crf = GridCRF(n_states=X.shape[-1])
    clf = StructuredPerceptron(model=crf, max_iter=10)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
开发者ID:DATAQC,项目名称:pystruct,代码行数:7,代码来源:test_perceptron.py

示例10: test_max_product_multinomial_crf

def test_max_product_multinomial_crf():
    X, Y = generate_blocks_multinomial(n_samples=1)
    x, y = X[0], Y[0]
    w = np.array([1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.4, -0.3, 0.3, -0.5, -0.1, 0.3])  # unary  # pairwise
    crf = GridCRF(inference_method="max-product")
    crf.initialize(X, Y)
    y_hat = crf.inference(x, w)
    assert_array_equal(y, y_hat)
开发者ID:martinsch,项目名称:pystruct,代码行数:8,代码来源:test_maxprod.py

示例11: test_multinomial_blocks_subgradient_offline

def test_multinomial_blocks_subgradient_offline():
    #testing cutting plane ssvm on easy multinomial dataset
    X, Y = generate_blocks_multinomial(n_samples=10, noise=0.6, seed=1)
    n_labels = len(np.unique(Y))
    crf = GridCRF(n_states=n_labels, inference_method=inference_method)
    clf = SubgradientSSVM(model=crf, max_iter=100, online=False)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
开发者ID:martinsch,项目名称:coulomb_ssvm,代码行数:9,代码来源:test_subgradient_svm.py

示例12: test_multinomial_blocks_frankwolfe

def test_multinomial_blocks_frankwolfe():
    X, Y = generate_blocks_multinomial(n_samples=50, noise=0.5,
                                       seed=0)
    crf = GridCRF(inference_method='qpbo')
    clf = FrankWolfeSSVM(model=crf, C=1, line_search=True,
                         batch_mode=False, check_dual_every=500)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
开发者ID:DerThorsten,项目名称:pystruct,代码行数:9,代码来源:test_frankwolfe_svm.py

示例13: test_blocks_multinomial_crf

def test_blocks_multinomial_crf():
    X, Y = generate_blocks_multinomial(n_samples=1, size_x=9, seed=0)
    x, y = X[0], Y[0]
    w = np.array([1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.4, -0.3, 0.3, -0.5, -0.1, 0.3])  # unaryA  # pairwise
    for inference_method in get_installed():
        crf = GridCRF(inference_method=inference_method)
        crf.initialize(X, Y)
        y_hat = crf.inference(x, w)
        assert_array_equal(y, y_hat)
开发者ID:martinsch,项目名称:pystruct,代码行数:9,代码来源:test_grid_crf.py

示例14: test_multinomial_blocks_cutting_plane

def test_multinomial_blocks_cutting_plane():
    #testing cutting plane ssvm on easy multinomial dataset
    X, Y = generate_blocks_multinomial(n_samples=40, noise=0.5, seed=0)
    n_labels = len(np.unique(Y))
    crf = GridCRF(n_states=n_labels, inference_method=inference_method)
    clf = NSlackSSVM(model=crf, max_iter=100, C=100, check_constraints=False,
                     batch_size=1)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
开发者ID:DATAQC,项目名称:pystruct,代码行数:10,代码来源:test_n_slack_ssvm.py

示例15: test_multinomial_blocks_subgradient

def test_multinomial_blocks_subgradient():
    #testing cutting plane ssvm on easy multinomial dataset
    X, Y = generate_blocks_multinomial(n_samples=10, noise=0.3, seed=1)
    n_labels = len(np.unique(Y))
    crf = GridCRF(n_states=n_labels, inference_method=inference_method)
    clf = SubgradientSSVM(model=crf, max_iter=50, C=10, momentum=.98,
                          learning_rate=0.001)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
开发者ID:DerThorsten,项目名称:pystruct,代码行数:10,代码来源:test_subgradient_svm.py


注:本文中的pystruct.datasets.generate_blocks_multinomial函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。