当前位置: 首页>>代码示例>>Python>>正文


Python datasets.generate_blocks函数代码示例

本文整理汇总了Python中pystruct.datasets.generate_blocks函数的典型用法代码示例。如果您正苦于以下问题:Python generate_blocks函数的具体用法?Python generate_blocks怎么用?Python generate_blocks使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了generate_blocks函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_continuous_y

def test_continuous_y():
    for inference_method in get_installed(["lp", "ad3"]):
        X, Y = generate_blocks(n_samples=1)
        x, y = X[0], Y[0]
        w = np.array([1, 0, 0, 1, 0, -4, 0])  # unary  # pairwise

        crf = GridCRF(inference_method=inference_method)
        crf.initialize(X, Y)
        joint_feature = crf.joint_feature(x, y)
        y_cont = np.zeros_like(x)
        gx, gy = np.indices(x.shape[:-1])
        y_cont[gx, gy, y] = 1
        # need to generate edge marginals
        vert = np.dot(y_cont[1:, :, :].reshape(-1, 2).T, y_cont[:-1, :, :].reshape(-1, 2))
        # horizontal edges
        horz = np.dot(y_cont[:, 1:, :].reshape(-1, 2).T, y_cont[:, :-1, :].reshape(-1, 2))
        pw = vert + horz

        joint_feature_cont = crf.joint_feature(x, (y_cont, pw))
        assert_array_almost_equal(joint_feature, joint_feature_cont)

        const = find_constraint(crf, x, y, w, relaxed=False)
        const_cont = find_constraint(crf, x, y, w, relaxed=True)

        # djoint_feature and loss are equal:
        assert_array_almost_equal(const[1], const_cont[1], 4)
        assert_almost_equal(const[2], const_cont[2], 4)

        # returned y_hat is one-hot version of other
        if isinstance(const_cont[0], tuple):
            assert_array_equal(const[0], np.argmax(const_cont[0][0], axis=-1))

            # test loss:
            assert_almost_equal(crf.loss(y, const[0]), crf.continuous_loss(y, const_cont[0][0]), 4)
开发者ID:martinsch,项目名称:pystruct,代码行数:34,代码来源:test_grid_crf.py

示例2: test_binary_blocks_one_slack_graph

def test_binary_blocks_one_slack_graph():
    #testing cutting plane ssvm on easy binary dataset
    # generate graphs explicitly for each example
    print("testing %s" % inference_method)
    X, Y = generate_blocks(n_samples=3)
    crf = GraphCRF(inference_method=inference_method)
    clf = OneSlackSSVM(model=crf, max_iter=100, C=1,
                       check_constraints=True, break_on_bad=True,
                       n_jobs=1, tol=.1)
    x1, x2, x3 = X
    y1, y2, y3 = Y
    n_states = len(np.unique(Y))
    # delete some rows to make it more fun
    x1, y1 = x1[:, :-1], y1[:, :-1]
    x2, y2 = x2[:-1], y2[:-1]
    # generate graphs
    X_ = [x1, x2, x3]
    G = [make_grid_edges(x) for x in X_]

    # reshape / flatten x and y
    X_ = [x.reshape(-1, n_states) for x in X_]
    Y = [y.ravel() for y in [y1, y2, y3]]

    X = zip(X_, G)

    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    for y, y_pred in zip(Y, Y_pred):
        assert_array_equal(y, y_pred)
开发者ID:UIKit0,项目名称:pystruct,代码行数:29,代码来源:test_one_slack_ssvm.py

示例3: test_binary_blocks

def test_binary_blocks():
    X, Y = generate_blocks(n_samples=10)
    crf = GridCRF()
    clf = StructuredPerceptron(model=crf, max_iter=40)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
开发者ID:DATAQC,项目名称:pystruct,代码行数:7,代码来源:test_perceptron.py

示例4: test_max_product_binary_blocks

def test_max_product_binary_blocks():
    X, Y = generate_blocks(n_samples=1)
    x, y = X[0], Y[0]
    w = np.array([1, 0, 0, 1, 0, -4, 0])  # unary  # pairwise
    crf = GridCRF(inference_method="max-product")
    crf.initialize(X, Y)
    y_hat = crf.inference(x, w)
    assert_array_equal(y, y_hat)
开发者ID:martinsch,项目名称:pystruct,代码行数:8,代码来源:test_maxprod.py

示例5: test_binary_blocks_crf_n8_lp

def test_binary_blocks_crf_n8_lp():
    X, Y = generate_blocks(n_samples=1, noise=1)
    x, y = X[0], Y[0]
    w = np.array([1, 0, 0, 1, 1, -1.4, 1])  # unary  # pairwise
    crf = GridCRF(neighborhood=8)
    crf.initialize(X, Y)
    y_hat = crf.inference(x, w)
    assert_array_equal(y, y_hat)
开发者ID:martinsch,项目名称:pystruct,代码行数:8,代码来源:test_grid_crf.py

示例6: test_binary_blocks_batches_n_slack

def test_binary_blocks_batches_n_slack():
    #testing cutting plane ssvm on easy binary dataset
    X, Y = generate_blocks(n_samples=5)
    crf = GridCRF(inference_method=inference_method)
    clf = NSlackSSVM(model=crf, max_iter=20, batch_size=1, C=100)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
开发者ID:DATAQC,项目名称:pystruct,代码行数:8,代码来源:test_n_slack_ssvm.py

示例7: test_binary_blocks

def test_binary_blocks():
    #testing subgradient ssvm on easy binary dataset
    X, Y = generate_blocks(n_samples=5)
    crf = GridCRF(inference_method=inference_method)
    clf = SubgradientSSVM(model=crf)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
开发者ID:martinsch,项目名称:coulomb_ssvm,代码行数:8,代码来源:test_subgradient_svm.py

示例8: test_binary_blocks_cutting_plane

def test_binary_blocks_cutting_plane():
    #testing cutting plane ssvm on easy binary dataset
    X, Y = generate_blocks(n_samples=5)
    crf = GridCRF(inference_method=inference_method)
    clf = NSlackSSVM(model=crf, max_iter=20, C=100,
                     check_constraints=True, break_on_bad=False)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
开发者ID:DATAQC,项目名称:pystruct,代码行数:9,代码来源:test_n_slack_ssvm.py

示例9: test_loss_augmentation

def test_loss_augmentation():
    X, Y = generate_blocks(n_samples=1)
    x, y = X[0], Y[0]
    w = np.array([1, 0, 0, 1, 0, -4, 0])  # unary  # pairwise
    crf = GridCRF()
    crf.initialize(X, Y)
    y_hat, energy = crf.loss_augmented_inference(x, y, w, return_energy=True)

    assert_almost_equal(energy + crf.loss(y, y_hat), -np.dot(w, crf.joint_feature(x, y_hat)))
开发者ID:martinsch,项目名称:pystruct,代码行数:9,代码来源:test_grid_crf.py

示例10: test_binary_blocks

def test_binary_blocks():
    #testing subgradient ssvm on easy binary dataset
    X, Y = generate_blocks(n_samples=5)
    crf = GridCRF(inference_method=inference_method)
    clf = SubgradientSSVM(model=crf, C=100, learning_rate=1, decay_exponent=1,
                          momentum=0, decay_t0=10)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
开发者ID:DerThorsten,项目名称:pystruct,代码行数:9,代码来源:test_subgradient_svm.py

示例11: test_binary_blocks_perceptron_online

def test_binary_blocks_perceptron_online():
    #testing subgradient ssvm on easy binary dataset
    X, Y = generate_blocks(n_samples=10)
    inference_method = get_installed(['qpbo', 'ad3', 'lp'])[0]
    crf = GridCRF(inference_method=inference_method)
    clf = StructuredPerceptron(model=crf, max_iter=20)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
开发者ID:DATAQC,项目名称:pystruct,代码行数:9,代码来源:test_structured_perceptron.py

示例12: test_binary_blocks_crf

def test_binary_blocks_crf():
    X, Y = generate_blocks(n_samples=1)
    x, y = X[0], Y[0]
    w = np.array([1, 0, 0, 1, 0, -4, 0])  # unary  # pairwise
    for inference_method in get_installed(["dai", "qpbo", "lp", "ad3", "ogm"]):
        crf = GridCRF(inference_method=inference_method)
        crf.initialize(X, Y)
        y_hat = crf.inference(x, w)
        assert_array_equal(y, y_hat)
开发者ID:martinsch,项目名称:pystruct,代码行数:9,代码来源:test_grid_crf.py

示例13: test_binary_ssvm_attractive_potentials

def test_binary_ssvm_attractive_potentials():
    # test that submodular SSVM can learn the block dataset
    X, Y = generate_blocks(n_samples=10)
    crf = GridCRF(inference_method=inference_method)
    submodular_clf = NSlackSSVM(model=crf, max_iter=200, C=100,
                                check_constraints=True,
                                negativity_constraint=[5])
    submodular_clf.fit(X, Y)
    Y_pred = submodular_clf.predict(X)
    assert_array_equal(Y, Y_pred)
    assert_true(submodular_clf.w[5] < 0)
开发者ID:DATAQC,项目名称:pystruct,代码行数:11,代码来源:test_n_slack_ssvm.py

示例14: test_blocks_crf_unaries

def test_blocks_crf_unaries():
    X, Y = generate_blocks(n_samples=1)
    x, _ = X[0], Y[0]
    unary_weights = np.repeat(np.eye(2), 2, axis=0)
    pairwise_weights = np.array([0,
                                 0, 0,
                                 0, 0, 0,
                                 0, 0, 0, 0])
    w = np.hstack([unary_weights.ravel(), pairwise_weights])
    crf = LatentGridCRF(n_states_per_label=2, n_labels=2, n_features=2)
    h_hat = crf.inference(x, w)
    assert_array_equal(h_hat // 2, np.argmax(x, axis=-1))
开发者ID:KentChun33333,项目名称:pystruct,代码行数:12,代码来源:test_latent_crf.py

示例15: test_binary_blocks_crf

def test_binary_blocks_crf():
    X, Y = generate_blocks(n_samples=1)
    x, y = X[0], Y[0]
    w = np.array([1, 0,  # unary
                  0, 1,
                  0,     # pairwise
                  -4, 0])
    for inference_method in get_installed(['dai', 'qpbo', 'lp', 'ad3', 'ogm']):
        crf = GridCRF(inference_method=inference_method)
        crf.initialize(X, Y)
        y_hat = crf.inference(x, w)
        assert_array_equal(y, y_hat)
开发者ID:al13n321,项目名称:pystruct,代码行数:12,代码来源:test_grid_crf.py


注:本文中的pystruct.datasets.generate_blocks函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。