本文整理汇总了Python中pyspark.streaming.context.StreamingContext.queueStream方法的典型用法代码示例。如果您正苦于以下问题:Python StreamingContext.queueStream方法的具体用法?Python StreamingContext.queueStream怎么用?Python StreamingContext.queueStream使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pyspark.streaming.context.StreamingContext
的用法示例。
在下文中一共展示了StreamingContext.queueStream方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: PySparkStreamingTestCase
# 需要导入模块: from pyspark.streaming.context import StreamingContext [as 别名]
# 或者: from pyspark.streaming.context.StreamingContext import queueStream [as 别名]
class PySparkStreamingTestCase(unittest.TestCase):
timeout = 10 # seconds
duration = .5
@classmethod
def setUpClass(cls):
class_name = cls.__name__
conf = SparkConf().set("spark.default.parallelism", 1)
cls.sc = SparkContext(appName=class_name, conf=conf)
cls.sc.setCheckpointDir("/tmp")
@classmethod
def tearDownClass(cls):
cls.sc.stop()
# Clean up in the JVM just in case there has been some issues in Python API
jSparkContextOption = SparkContext._jvm.SparkContext.get()
if jSparkContextOption.nonEmpty():
jSparkContextOption.get().stop()
def setUp(self):
self.ssc = StreamingContext(self.sc, self.duration)
def tearDown(self):
if self.ssc is not None:
self.ssc.stop(False)
# Clean up in the JVM just in case there has been some issues in Python API
jStreamingContextOption = StreamingContext._jvm.SparkContext.getActive()
if jStreamingContextOption.nonEmpty():
jStreamingContextOption.get().stop(False)
def wait_for(self, result, n):
start_time = time.time()
while len(result) < n and time.time() - start_time < self.timeout:
time.sleep(0.01)
if len(result) < n:
print("timeout after", self.timeout)
def _take(self, dstream, n):
"""
Return the first `n` elements in the stream (will start and stop).
"""
results = []
def take(_, rdd):
if rdd and len(results) < n:
results.extend(rdd.take(n - len(results)))
dstream.foreachRDD(take)
self.ssc.start()
self.wait_for(results, n)
return results
def _collect(self, dstream, n, block=True):
"""
Collect each RDDs into the returned list.
:return: list, which will have the collected items.
"""
result = []
def get_output(_, rdd):
if rdd and len(result) < n:
r = rdd.collect()
if r:
result.append(r)
dstream.foreachRDD(get_output)
if not block:
return result
self.ssc.start()
self.wait_for(result, n)
return result
def _test_func(self, input, func, expected, sort=False, input2=None):
"""
@param input: dataset for the test. This should be list of lists.
@param func: wrapped function. This function should return PythonDStream object.
@param expected: expected output for this testcase.
"""
if not isinstance(input[0], RDD):
input = [self.sc.parallelize(d, 1) for d in input]
input_stream = self.ssc.queueStream(input)
if input2 and not isinstance(input2[0], RDD):
input2 = [self.sc.parallelize(d, 1) for d in input2]
input_stream2 = self.ssc.queueStream(input2) if input2 is not None else None
# Apply test function to stream.
if input2:
stream = func(input_stream, input_stream2)
else:
stream = func(input_stream)
result = self._collect(stream, len(expected))
if sort:
self._sort_result_based_on_key(result)
self._sort_result_based_on_key(expected)
#.........这里部分代码省略.........
示例2: setupFunc
# 需要导入模块: from pyspark.streaming.context import StreamingContext [as 别名]
# 或者: from pyspark.streaming.context.StreamingContext import queueStream [as 别名]
def setupFunc():
ssc = StreamingContext(self.sc, self.duration)
ssc.queueStream([[1]]).foreachRDD(lambda rdd: rdd.count())
self.setupCalled = True
return ssc
示例3: SparkContext
# 需要导入模块: from pyspark.streaming.context import StreamingContext [as 别名]
# 或者: from pyspark.streaming.context.StreamingContext import queueStream [as 别名]
sc = SparkContext(master="local[*]", appName="StreamingOps", conf=conf)
ssc = StreamingContext(sc, 1)
rdd1 = ssc.sparkContext.parallelize(["a", "b", "c", "c", "c"])
rdd2 = ssc.sparkContext.parallelize(["1,2,3,4,5"])
rdd3 = ssc.sparkContext.parallelize([("k1", "r1"), ("k2", "r2"), ("k3", "r3")])
rdd4 = ssc.sparkContext.parallelize([("k1", "s1"), ("k2", "s2")])
rdd5 = ssc.sparkContext.range(1, 6)
q1 = [rdd1]
q2 = [rdd2]
q3 = [rdd3]
q4 = [rdd4]
q5 = [rdd5]
ds1 = ssc.queueStream(q1, True)
ds2 = ssc.queueStream(q2, True)
ds3 = ssc.queueStream(q3, True)
ds4 = ssc.queueStream(q4, True)
ds5 = ssc.queueStream(q5, True)
# [예제 실행 방법] 아래에서 원하는 예제의 주석을 제거하고 실행!!
# 6.3.1절(파이썬의 경우 print가 아닌 pprint임)
# ds1.pprint()
# 6.3.2절
# ds1.map(lambda v: (v, 1)).pprint()
# 6.3.3절
# ds2.flatMap(lambda v: v.split(",")).pprint()
示例4: StreamingContextTests
# 需要导入模块: from pyspark.streaming.context import StreamingContext [as 别名]
# 或者: from pyspark.streaming.context.StreamingContext import queueStream [as 别名]
class StreamingContextTests(PySparkStreamingTestCase):
duration = 0.1
setupCalled = False
def _add_input_stream(self):
inputs = [range(1, x) for x in range(101)]
stream = self.ssc.queueStream(inputs)
self._collect(stream, 1, block=False)
def test_stop_only_streaming_context(self):
self._add_input_stream()
self.ssc.start()
self.ssc.stop(False)
self.assertEqual(len(self.sc.parallelize(range(5), 5).glom().collect()), 5)
def test_stop_multiple_times(self):
self._add_input_stream()
self.ssc.start()
self.ssc.stop(False)
self.ssc.stop(False)
def test_queue_stream(self):
input = [list(range(i + 1)) for i in range(3)]
dstream = self.ssc.queueStream(input)
result = self._collect(dstream, 3)
self.assertEqual(input, result)
def test_text_file_stream(self):
d = tempfile.mkdtemp()
self.ssc = StreamingContext(self.sc, self.duration)
dstream2 = self.ssc.textFileStream(d).map(int)
result = self._collect(dstream2, 2, block=False)
self.ssc.start()
for name in ('a', 'b'):
time.sleep(1)
with open(os.path.join(d, name), "w") as f:
f.writelines(["%d\n" % i for i in range(10)])
self.wait_for(result, 2)
self.assertEqual([list(range(10)), list(range(10))], result)
def test_binary_records_stream(self):
d = tempfile.mkdtemp()
self.ssc = StreamingContext(self.sc, self.duration)
dstream = self.ssc.binaryRecordsStream(d, 10).map(
lambda v: struct.unpack("10b", bytes(v)))
result = self._collect(dstream, 2, block=False)
self.ssc.start()
for name in ('a', 'b'):
time.sleep(1)
with open(os.path.join(d, name), "wb") as f:
f.write(bytearray(range(10)))
self.wait_for(result, 2)
self.assertEqual([list(range(10)), list(range(10))], [list(v[0]) for v in result])
def test_union(self):
input = [list(range(i + 1)) for i in range(3)]
dstream = self.ssc.queueStream(input)
dstream2 = self.ssc.queueStream(input)
dstream3 = self.ssc.union(dstream, dstream2)
result = self._collect(dstream3, 3)
expected = [i * 2 for i in input]
self.assertEqual(expected, result)
def test_transform(self):
dstream1 = self.ssc.queueStream([[1]])
dstream2 = self.ssc.queueStream([[2]])
dstream3 = self.ssc.queueStream([[3]])
def func(rdds):
rdd1, rdd2, rdd3 = rdds
return rdd2.union(rdd3).union(rdd1)
dstream = self.ssc.transform([dstream1, dstream2, dstream3], func)
self.assertEqual([2, 3, 1], self._take(dstream, 3))
def test_get_active(self):
self.assertEqual(StreamingContext.getActive(), None)
# Verify that getActive() returns the active context
self.ssc.queueStream([[1]]).foreachRDD(lambda rdd: rdd.count())
self.ssc.start()
self.assertEqual(StreamingContext.getActive(), self.ssc)
# Verify that getActive() returns None
self.ssc.stop(False)
self.assertEqual(StreamingContext.getActive(), None)
# Verify that if the Java context is stopped, then getActive() returns None
self.ssc = StreamingContext(self.sc, self.duration)
self.ssc.queueStream([[1]]).foreachRDD(lambda rdd: rdd.count())
self.ssc.start()
self.assertEqual(StreamingContext.getActive(), self.ssc)
self.ssc._jssc.stop(False)
self.assertEqual(StreamingContext.getActive(), None)
def test_get_active_or_create(self):
# Test StreamingContext.getActiveOrCreate() without checkpoint data
# See CheckpointTests for tests with checkpoint data
#.........这里部分代码省略.........
示例5: StreamingContextTests
# 需要导入模块: from pyspark.streaming.context import StreamingContext [as 别名]
# 或者: from pyspark.streaming.context.StreamingContext import queueStream [as 别名]
class StreamingContextTests(PySparkStreamingTestCase):
duration = 0.1
def _add_input_stream(self):
inputs = [range(1, x) for x in range(101)]
stream = self.ssc.queueStream(inputs)
self._collect(stream, 1, block=False)
def test_stop_only_streaming_context(self):
self._add_input_stream()
self.ssc.start()
self.ssc.stop(False)
self.assertEqual(len(self.sc.parallelize(range(5), 5).glom().collect()), 5)
def test_stop_multiple_times(self):
self._add_input_stream()
self.ssc.start()
self.ssc.stop(False)
self.ssc.stop(False)
def test_queue_stream(self):
input = [list(range(i + 1)) for i in range(3)]
dstream = self.ssc.queueStream(input)
result = self._collect(dstream, 3)
self.assertEqual(input, result)
def test_text_file_stream(self):
d = tempfile.mkdtemp()
self.ssc = StreamingContext(self.sc, self.duration)
dstream2 = self.ssc.textFileStream(d).map(int)
result = self._collect(dstream2, 2, block=False)
self.ssc.start()
for name in ("a", "b"):
time.sleep(1)
with open(os.path.join(d, name), "w") as f:
f.writelines(["%d\n" % i for i in range(10)])
self.wait_for(result, 2)
self.assertEqual([list(range(10)), list(range(10))], result)
def test_binary_records_stream(self):
d = tempfile.mkdtemp()
self.ssc = StreamingContext(self.sc, self.duration)
dstream = self.ssc.binaryRecordsStream(d, 10).map(lambda v: struct.unpack("10b", bytes(v)))
result = self._collect(dstream, 2, block=False)
self.ssc.start()
for name in ("a", "b"):
time.sleep(1)
with open(os.path.join(d, name), "wb") as f:
f.write(bytearray(range(10)))
self.wait_for(result, 2)
self.assertEqual([list(range(10)), list(range(10))], [list(v[0]) for v in result])
def test_union(self):
input = [list(range(i + 1)) for i in range(3)]
dstream = self.ssc.queueStream(input)
dstream2 = self.ssc.queueStream(input)
dstream3 = self.ssc.union(dstream, dstream2)
result = self._collect(dstream3, 3)
expected = [i * 2 for i in input]
self.assertEqual(expected, result)
def test_transform(self):
dstream1 = self.ssc.queueStream([[1]])
dstream2 = self.ssc.queueStream([[2]])
dstream3 = self.ssc.queueStream([[3]])
def func(rdds):
rdd1, rdd2, rdd3 = rdds
return rdd2.union(rdd3).union(rdd1)
dstream = self.ssc.transform([dstream1, dstream2, dstream3], func)
self.assertEqual([2, 3, 1], self._take(dstream, 3))
示例6: StreamingTestCase
# 需要导入模块: from pyspark.streaming.context import StreamingContext [as 别名]
# 或者: from pyspark.streaming.context.StreamingContext import queueStream [as 别名]
class StreamingTestCase(SparkTestingBaseReuse):
"""Basic common test case for Spark Streaming tests. Provides a
Spark Streaming context as well as some helper methods for creating
streaming input and collecting streaming output.
Modeled after PySparkStreamingTestCase."""
timeout = 15 # seconds
duration = .5
@classmethod
def setUpClass(cls):
super(StreamingTestCase, cls).setUpClass()
cls.sc.setCheckpointDir("/tmp")
@classmethod
def tearDownClass(cls):
super(StreamingTestCase, cls).tearDownClass()
@classmethod
def _sort_result_based_on_key(cls, result):
return map(lambda x: sorted(x), result)
def setUp(self):
self.ssc = StreamingContext(self.sc, self.duration)
def tearDown(self):
self.ssc.stop(False)
def wait_for(self, result, n):
start_time = time.time()
while len(result) < n and time.time() - start_time < self.timeout:
time.sleep(0.01)
if len(result) < n:
print("timeout after", self.timeout)
def _take(self, dstream, n):
"""
Return the first `n` elements in the stream (will start and stop).
"""
results = []
def take(_, rdd):
if rdd and len(results) < n:
results.extend(rdd.take(n - len(results)))
dstream.foreachRDD(take)
self.ssc.start()
self.wait_for(results, n)
return results
def _collect(self, dstream, n, block=True):
"""
Collect each RDDs into the returned list.
:return: list, which will have the collected items.
"""
result = []
def get_output(_, rdd):
if rdd and len(result) < n:
r = rdd.collect()
if r:
result.append(r)
dstream.foreachRDD(get_output)
if not block:
return result
self.ssc.start()
self.wait_for(result, n)
return result
def run_func(self, input, func, expected, sort=False, input2=None):
"""
@param input: dataset for the test. This should be list of lists
or list of RDDs.
@param input2: Optional second dataset for the test. If provided your
func must take two PythonDStreams as input.
@param func: wrapped function. This function should return
PythonDStream.
@param expected: expected output for this testcase.
Warning: If output is longer than expected this will silently
discard the additional output. TODO: fail when this happens.
"""
if not isinstance(input[0], RDD):
input = [self.sc.parallelize(d, 1) for d in input]
input_stream = self.ssc.queueStream(input)
if input2 and not isinstance(input2[0], RDD):
input2 = [self.sc.parallelize(d, 1) for d in input2]
# Apply test function to stream.
if input2:
input_stream2 = self.ssc.queueStream(input2)
stream = func(input_stream, input_stream2)
else:
stream = func(input_stream)
#.........这里部分代码省略.........
示例7: SparkConf
# 需要导入模块: from pyspark.streaming.context import StreamingContext [as 别名]
# 或者: from pyspark.streaming.context.StreamingContext import queueStream [as 别名]
# 6.2.3절
from pyspark import SparkContext, SparkConf
from pyspark.streaming.context import StreamingContext
conf = SparkConf()
sc = SparkContext(master="local[*]", appName="QueueSample", conf=conf)
ssc = StreamingContext(sc, 3)
rdd1 = sc.parallelize(["a", "b", "c"])
rdd2 = sc.parallelize(["c", "d", "e"])
queue = [rdd1, rdd2]
ds = ssc.queueStream(queue)
ds.pprint()
ssc.start()
ssc.awaitTermination()
示例8: SparkConf
# 需要导入模块: from pyspark.streaming.context import StreamingContext [as 别名]
# 或者: from pyspark.streaming.context.StreamingContext import queueStream [as 别名]
# 6.1.1절 예제 6-3
from pyspark import SparkContext, SparkConf
from pyspark.streaming.context import StreamingContext
conf = SparkConf()
sc = SparkContext(master="local[*]", appName="SteamingSample", conf=conf)
ssc = StreamingContext(sc, 3)
rdd1 = sc.parallelize(["Spark Streaming Sample ssc"])
rdd2 = sc.parallelize(["Spark Quque Spark API"])
inputQueue = [rdd1, rdd2]
lines = ssc.queueStream(inputQueue, True)
words = lines.flatMap(lambda v: v.split(" "))
words.countByValue().pprint()
ssc.start()
ssc.awaitTermination()
示例9: BasicOperationTests
# 需要导入模块: from pyspark.streaming.context import StreamingContext [as 别名]
# 或者: from pyspark.streaming.context.StreamingContext import queueStream [as 别名]
class BasicOperationTests(PySparkStreamingTestCase):
def test_map(self):
"""Basic operation test for DStream.map."""
input = [range(1, 5), range(5, 9), range(9, 13)]
def func(dstream):
return dstream.map(str)
expected = [list(map(str, x)) for x in input]
self._test_func(input, func, expected)
def test_flatMap(self):
"""Basic operation test for DStream.flatMap."""
input = [range(1, 5), range(5, 9), range(9, 13)]
def func(dstream):
return dstream.flatMap(lambda x: (x, x * 2))
expected = [list(chain.from_iterable((map(lambda y: [y, y * 2], x))))
for x in input]
self._test_func(input, func, expected)
def test_filter(self):
"""Basic operation test for DStream.filter."""
input = [range(1, 5), range(5, 9), range(9, 13)]
def func(dstream):
return dstream.filter(lambda x: x % 2 == 0)
expected = [[y for y in x if y % 2 == 0] for x in input]
self._test_func(input, func, expected)
def test_count(self):
"""Basic operation test for DStream.count."""
input = [range(5), range(10), range(20)]
def func(dstream):
return dstream.count()
expected = [[len(x)] for x in input]
self._test_func(input, func, expected)
def test_slice(self):
"""Basic operation test for DStream.slice."""
import datetime as dt
self.ssc = StreamingContext(self.sc, 1.0)
self.ssc.remember(4.0)
input = [[1], [2], [3], [4]]
stream = self.ssc.queueStream([self.sc.parallelize(d, 1) for d in input])
time_vals = []
def get_times(t, rdd):
if rdd and len(time_vals) < len(input):
time_vals.append(t)
stream.foreachRDD(get_times)
self.ssc.start()
self.wait_for(time_vals, 4)
begin_time = time_vals[0]
def get_sliced(begin_delta, end_delta):
begin = begin_time + dt.timedelta(seconds=begin_delta)
end = begin_time + dt.timedelta(seconds=end_delta)
rdds = stream.slice(begin, end)
result_list = [rdd.collect() for rdd in rdds]
return [r for result in result_list for r in result]
self.assertEqual(set([1]), set(get_sliced(0, 0)))
self.assertEqual(set([2, 3]), set(get_sliced(1, 2)))
self.assertEqual(set([2, 3, 4]), set(get_sliced(1, 4)))
self.assertEqual(set([1, 2, 3, 4]), set(get_sliced(0, 4)))
def test_reduce(self):
"""Basic operation test for DStream.reduce."""
input = [range(1, 5), range(5, 9), range(9, 13)]
def func(dstream):
return dstream.reduce(operator.add)
expected = [[reduce(operator.add, x)] for x in input]
self._test_func(input, func, expected)
def test_reduceByKey(self):
"""Basic operation test for DStream.reduceByKey."""
input = [[("a", 1), ("a", 1), ("b", 1), ("b", 1)],
[("", 1), ("", 1), ("", 1), ("", 1)],
[(1, 1), (1, 1), (2, 1), (2, 1), (3, 1)]]
def func(dstream):
return dstream.reduceByKey(operator.add)
expected = [[("a", 2), ("b", 2)], [("", 4)], [(1, 2), (2, 2), (3, 1)]]
self._test_func(input, func, expected, sort=True)
def test_mapValues(self):
"""Basic operation test for DStream.mapValues."""
input = [[("a", 2), ("b", 2), ("c", 1), ("d", 1)],
[(0, 4), (1, 1), (2, 2), (3, 3)],
[(1, 1), (2, 1), (3, 1), (4, 1)]]
def func(dstream):
return dstream.mapValues(lambda x: x + 10)
expected = [[("a", 12), ("b", 12), ("c", 11), ("d", 11)],
#.........这里部分代码省略.........