当前位置: 首页>>代码示例>>Python>>正文


Python StreamingContext.addStreamingListener方法代码示例

本文整理汇总了Python中pyspark.streaming.StreamingContext.addStreamingListener方法的典型用法代码示例。如果您正苦于以下问题:Python StreamingContext.addStreamingListener方法的具体用法?Python StreamingContext.addStreamingListener怎么用?Python StreamingContext.addStreamingListener使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pyspark.streaming.StreamingContext的用法示例。


在下文中一共展示了StreamingContext.addStreamingListener方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: MyStreamingListener

# 需要导入模块: from pyspark.streaming import StreamingContext [as 别名]
# 或者: from pyspark.streaming.StreamingContext import addStreamingListener [as 别名]
class MyStreamingListener(StreamingListener):
    """
    Uses py4j framework to send Java objects to the pyspark process.
    The parameters to the callbacks are Java objects with members variables as objects.
    They are not sent as primitive data types.
    """
    def onBatchStarted(self, batchStarted):
        # 'batchStarted' instance of org.apache.spark.streaming.api.java.JavaStreamingListenerBatchStarted
        print('>>> Batch completed...number of records: ', batchStarted.batchInfo().numRecords())

    def onBatchCompleted(self, batchCompleted):
        # 'batchStarted' instance of org.apache.spark.streaming.api.java.JavaStreamingListenerBatchCompleted
        print('>>> Batch completed...time taken (ms) = ', batchCompleted.batchInfo().totalDelay())
        
if __name__ == '__main__':
    ssc = StreamingContext(\
        SparkContext(conf = SparkConf().setAppName('TestStreamingListenerJob')), \
        5)
 
    ssc.addStreamingListener(MyStreamingListener())
    
    ssc\
         .socketTextStream('localhost', 9999)\
         .flatMap(lambda line: line.split(' '))\
         .count()\
         .pprint()

    ssc.start()
    ssc.awaitTermination()
开发者ID:prithvirajbose,项目名称:spark-dev,代码行数:31,代码来源:stream_list_test.py

示例2: model_prediction

# 需要导入模块: from pyspark.streaming import StreamingContext [as 别名]
# 或者: from pyspark.streaming.StreamingContext import addStreamingListener [as 别名]
    #output_file.write("KMeans Prediction, %.3f\n"%(end_pred-end_train))
    #return predictions
    

def model_prediction(rdd):
    pass


##########################################################################################################################
# Start Streaming App
    
ssc_start = time.time()    
ssc = StreamingContext(sc, STREAMING_WINDOW)

batch_collector = BatchInfoCollector()
ssc.addStreamingListener(batch_collector)
      

#kafka_dstream = KafkaUtils.createStream(ssc, KAFKA_ZK, "spark-streaming-consumer", {TOPIC: 1})
#kafka_param: "metadata.broker.list": brokers
#              "auto.offset.reset" : "smallest" # start from beginning
kafka_dstream = KafkaUtils.createDirectStream(ssc, [TOPIC], {"metadata.broker.list": METABROKER_LIST,
                                                             "auto.offset.reset" : "smallest"}) #, fromOffsets=fromOffset)
ssc_end = time.time()    
output_file.write("Spark SSC Startup, %d, %d, %s, %.5f\n"%(spark_cores, -1, NUMBER_PARTITIONS, ssc_end-ssc_start))


#####################################################################
# Scenario Count

#global counts
开发者ID:drelu,项目名称:Pilot-Memory,代码行数:33,代码来源:KMeans_SparkStreamingThroughputConsumer.py


注:本文中的pyspark.streaming.StreamingContext.addStreamingListener方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。