当前位置: 首页>>代码示例>>Python>>正文


Python Window.orderBy方法代码示例

本文整理汇总了Python中pyspark.sql.window.Window.orderBy方法的典型用法代码示例。如果您正苦于以下问题:Python Window.orderBy方法的具体用法?Python Window.orderBy怎么用?Python Window.orderBy使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pyspark.sql.window.Window的用法示例。


在下文中一共展示了Window.orderBy方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_window_functions_without_partitionBy

# 需要导入模块: from pyspark.sql.window import Window [as 别名]
# 或者: from pyspark.sql.window.Window import orderBy [as 别名]
    def test_window_functions_without_partitionBy(self):
        df = self.sqlCtx.createDataFrame([(1, "1"), (2, "2"), (1, "2"), (1, "2")], ["key", "value"])
        w = Window.orderBy("key", df.value)
        from pyspark.sql import functions as F

        sel = df.select(
            df.value,
            df.key,
            F.max("key").over(w.rowsBetween(0, 1)),
            F.min("key").over(w.rowsBetween(0, 1)),
            F.count("key").over(w.rowsBetween(float("-inf"), float("inf"))),
            F.rowNumber().over(w),
            F.rank().over(w),
            F.denseRank().over(w),
            F.ntile(2).over(w),
        )
        rs = sorted(sel.collect())
        expected = [
            ("1", 1, 1, 1, 4, 1, 1, 1, 1),
            ("2", 1, 1, 1, 4, 2, 2, 2, 1),
            ("2", 1, 2, 1, 4, 3, 2, 2, 2),
            ("2", 2, 2, 2, 4, 4, 4, 3, 2),
        ]
        for r, ex in zip(rs, expected):
            self.assertEqual(tuple(r), ex[: len(r)])
开发者ID:Noany,项目名称:Resque,代码行数:27,代码来源:tests.py

示例2: runOtherFunctions

# 需要导入模块: from pyspark.sql.window import Window [as 别名]
# 或者: from pyspark.sql.window.Window import orderBy [as 别名]
def runOtherFunctions(spark, personDf):
    df = spark.createDataFrame([("v1", "v2", "v3")], ["c1", "c2", "c3"]);

    # array
    df.select(df.c1, df.c2, df.c3, array("c1", "c2", "c3").alias("newCol")).show(truncate=False)

    # desc, asc
    personDf.show()
    personDf.sort(functions.desc("age"), functions.asc("name")).show()

    # pyspark 2.1.0 버전은 desc_nulls_first, desc_nulls_last, asc_nulls_first, asc_nulls_last 지원하지 않음

    # split, length (pyspark에서 컬럼은 df["col"] 또는 df.col 형태로 사용 가능)
    df2 = spark.createDataFrame([("Splits str around pattern",)], ['value'])
    df2.select(df2.value, split(df2.value, " "), length(df2.value)).show(truncate=False)

    # rownum, rank
    f1 = StructField("date", StringType(), True)
    f2 = StructField("product", StringType(), True)
    f3 = StructField("amount", IntegerType(), True)
    schema = StructType([f1, f2, f3])

    p1 = ("2017-12-25 12:01:00", "note", 1000)
    p2 = ("2017-12-25 12:01:10", "pencil", 3500)
    p3 = ("2017-12-25 12:03:20", "pencil", 23000)
    p4 = ("2017-12-25 12:05:00", "note", 1500)
    p5 = ("2017-12-25 12:05:07", "note", 2000)
    p6 = ("2017-12-25 12:06:25", "note", 1000)
    p7 = ("2017-12-25 12:08:00", "pencil", 500)
    p8 = ("2017-12-25 12:09:45", "note", 30000)

    dd = spark.createDataFrame([p1, p2, p3, p4, p5, p6, p7, p8], schema)
    w1 = Window.partitionBy("product").orderBy("amount")
    w2 = Window.orderBy("amount")
    dd.select(dd.product, dd.amount, functions.row_number().over(w1).alias("rownum"),
              functions.rank().over(w2).alias("rank")).show()
开发者ID:oopchoi,项目名称:spark,代码行数:38,代码来源:dataframe_sample.py

示例3: collect_numeric_metric

# 需要导入模块: from pyspark.sql.window import Window [as 别名]
# 或者: from pyspark.sql.window.Window import orderBy [as 别名]
def collect_numeric_metric(metric, df, population):
    cdf = df.select(df[metric['src']])
    cdf = cdf.dropna(subset=metric['src'])
    cdf = cdf.select(cdf[metric['src']].cast('float').alias('bucket'))

    total_count = cdf.count()
    num_partitions = total_count / 500
    ws = Window.orderBy('bucket')
    cdf = cdf.select(
        cdf['bucket'],
        cume_dist().over(ws).alias('c'),
        row_number().over(ws).alias('i'))
    cdf = cdf.filter("i = 1 OR i %% %d = 0" % num_partitions)
    cdf = cdf.collect()

    # Collapse rows with duplicate buckets.
    collapsed_data = []
    prev = None
    for d in cdf:
        if not collapsed_data:
            collapsed_data.append(d)  # Always keep first record.
            continue
        if prev and prev['bucket'] == d['bucket']:
            collapsed_data.pop()
        collapsed_data.append(d)
        prev = d

    # Calculate `p` from `c`.
    data = []
    prev = None
    for i, d in enumerate(collapsed_data):
        p = d['c'] - prev['c'] if prev else d['c']
        data.append({
            'bucket': d['bucket'],
            'c': d['c'],
            'p': p,
        })
        prev = d
    """
    Example of what `data` looks like now::

        [{'bucket': 0.0,        'c': 0.00126056, 'p': 0.00126056},
         {'bucket': 3.0,        'c': 0.00372313, 'p': 0.00246256},
         {'bucket': 4.0,        'c': 0.00430616, 'p': 0.0005830290622683026},
         {'bucket': 6.13319683, 'c': 0.00599801, 'p': 0.00169184},
         {'bucket': 8.0,        'c': 0.08114486, 'p': 0.07514685},
         {'bucket': 8.23087882, 'c': 0.08197282, 'p': 0.00082795},
         ...]
    """
    # Push data to database.
    sql = ("INSERT INTO api_numericcollection "
           "(num_observations, population, metric_id, dataset_id) "
           "VALUES (%s, %s, %s, %s) "
           "RETURNING id")
    params = [total_count, population, metric['id'], dataset_id]
    if DEBUG_SQL:
        collection_id = 0
        print sql, params
    else:
        cursor.execute(sql, params)
        conn.commit()
        collection_id = cursor.fetchone()[0]

    for d in data:
        sql = ("INSERT INTO api_numericpoint "
               "(bucket, proportion, collection_id) "
               "VALUES (%s, %s, %s)")
        params = [d['bucket'], d['p'], collection_id]
        if DEBUG_SQL:
            print sql, params
        else:
            cursor.execute(sql, params)

    if not DEBUG_SQL:
        conn.commit()
开发者ID:mozilla,项目名称:distribution-viewer,代码行数:77,代码来源:aggregate-and-import.py


注:本文中的pyspark.sql.window.Window.orderBy方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。