当前位置: 首页>>代码示例>>Python>>正文


Python types._verify_type函数代码示例

本文整理汇总了Python中pyspark.sql.types._verify_type函数的典型用法代码示例。如果您正苦于以下问题:Python _verify_type函数的具体用法?Python _verify_type怎么用?Python _verify_type使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了_verify_type函数的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _createFromRDD

    def _createFromRDD(self, rdd, schema, samplingRatio):
        """
        Create an RDD for DataFrame from an existing RDD, returns the RDD and schema.
        """
        if schema is None or isinstance(schema, (list, tuple)):
            struct = self._inferSchema(rdd, samplingRatio)
            converter = _create_converter(struct)
            rdd = rdd.map(converter)
            if isinstance(schema, (list, tuple)):
                for i, name in enumerate(schema):
                    struct.fields[i].name = name
                    struct.names[i] = name
            schema = struct

        elif isinstance(schema, StructType):
            # take the first few rows to verify schema
            rows = rdd.take(10)
            for row in rows:
                _verify_type(row, schema)

        else:
            raise TypeError("schema should be StructType or list or None, but got: %s" % schema)

        # convert python objects to sql data
        rdd = rdd.map(schema.toInternal)
        return rdd, schema
开发者ID:EntilZha,项目名称:spark,代码行数:26,代码来源:context.py

示例2: _createFromLocal

    def _createFromLocal(self, data, schema):
        """
        Create an RDD for DataFrame from an list or pandas.DataFrame, returns
        the RDD and schema.
        """
        if has_pandas and isinstance(data, pandas.DataFrame):
            if schema is None:
                schema = [str(x) for x in data.columns]
            data = [r.tolist() for r in data.to_records(index=False)]

        # make sure data could consumed multiple times
        if not isinstance(data, list):
            data = list(data)

        if schema is None or isinstance(schema, (list, tuple)):
            struct = self._inferSchemaFromList(data)
            if isinstance(schema, (list, tuple)):
                for i, name in enumerate(schema):
                    struct.fields[i].name = name
                    struct.names[i] = name
            schema = struct

        elif isinstance(schema, StructType):
            for row in data:
                _verify_type(row, schema)

        else:
            raise TypeError("schema should be StructType or list or None, but got: %s" % schema)

        # convert python objects to sql data
        data = [schema.toInternal(row) for row in data]
        return self._sc.parallelize(data), schema
开发者ID:EntilZha,项目名称:spark,代码行数:32,代码来源:context.py

示例3: applySchema

    def applySchema(self, rdd, schema):
        """
        Applies the given schema to the given RDD of L{tuple} or L{list}.

        ::note:
            Deprecated in 1.3, use :func:`createDataFrame` instead

        These tuples or lists can contain complex nested structures like
        lists, maps or nested rows.

        The schema should be a StructType.

        It is important that the schema matches the types of the objects
        in each row or exceptions could be thrown at runtime.

        >>> from pyspark.sql.types import *
        >>> rdd2 = sc.parallelize([(1, "row1"), (2, "row2"), (3, "row3")])
        >>> schema = StructType([StructField("field1", IntegerType(), False),
        ...     StructField("field2", StringType(), False)])
        >>> df = sqlCtx.applySchema(rdd2, schema)
        >>> df.collect()
        [Row(field1=1, field2=u'row1'),..., Row(field1=3, field2=u'row3')]
        """

        if isinstance(rdd, DataFrame):
            raise TypeError("Cannot apply schema to DataFrame")

        if not isinstance(schema, StructType):
            raise TypeError("schema should be StructType, but got %s" % schema)

        # take the first few rows to verify schema
        rows = rdd.take(10)
        # Row() cannot been deserialized by Pyrolite
        if rows and isinstance(rows[0], tuple) and rows[0].__class__.__name__ == 'Row':
            rdd = rdd.map(tuple)
            rows = rdd.take(10)

        for row in rows:
            _verify_type(row, schema)

        # convert python objects to sql data
        converter = _python_to_sql_converter(schema)
        rdd = rdd.map(converter)

        jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd())
        df = self._ssql_ctx.applySchemaToPythonRDD(jrdd.rdd(), schema.json())
        return DataFrame(df, self)
开发者ID:FrankWalter,项目名称:sparkOsr,代码行数:47,代码来源:context.py

示例4: test_udt

    def test_udt(self):
        from pyspark.sql.types import _parse_datatype_json_string, _infer_type, _verify_type
        from pyspark.sql.tests import ExamplePointUDT, ExamplePoint

        def check_datatype(datatype):
            pickled = pickle.loads(pickle.dumps(datatype))
            assert datatype == pickled
            scala_datatype = self.sqlCtx._ssql_ctx.parseDataType(datatype.json())
            python_datatype = _parse_datatype_json_string(scala_datatype.json())
            assert datatype == python_datatype

        check_datatype(ExamplePointUDT())
        structtype_with_udt = StructType([StructField("label", DoubleType(), False),
                                          StructField("point", ExamplePointUDT(), False)])
        check_datatype(structtype_with_udt)
        p = ExamplePoint(1.0, 2.0)
        self.assertEqual(_infer_type(p), ExamplePointUDT())
        _verify_type(ExamplePoint(1.0, 2.0), ExamplePointUDT())
        self.assertRaises(ValueError, lambda: _verify_type([1.0, 2.0], ExamplePointUDT()))

        check_datatype(PythonOnlyUDT())
        structtype_with_udt = StructType([StructField("label", DoubleType(), False),
                                          StructField("point", PythonOnlyUDT(), False)])
        check_datatype(structtype_with_udt)
        p = PythonOnlyPoint(1.0, 2.0)
        self.assertEqual(_infer_type(p), PythonOnlyUDT())
        _verify_type(PythonOnlyPoint(1.0, 2.0), PythonOnlyUDT())
        self.assertRaises(ValueError, lambda: _verify_type([1.0, 2.0], PythonOnlyUDT()))
开发者ID:EugenCepoi,项目名称:spark,代码行数:28,代码来源:tests.py

示例5: createDataFrame

    def createDataFrame(self, data, schema=None, samplingRatio=None):
        """
        Creates a :class:`DataFrame` from an :class:`RDD` of :class:`tuple`/:class:`list`,
        list or :class:`pandas.DataFrame`.

        When ``schema`` is a list of column names, the type of each column
        will be inferred from ``data``.

        When ``schema`` is ``None``, it will try to infer the schema (column names and types)
        from ``data``, which should be an RDD of :class:`Row`,
        or :class:`namedtuple`, or :class:`dict`.

        If schema inference is needed, ``samplingRatio`` is used to determined the ratio of
        rows used for schema inference. The first row will be used if ``samplingRatio`` is ``None``.

        :param data: an RDD of :class:`Row`/:class:`tuple`/:class:`list`/:class:`dict`,
            :class:`list`, or :class:`pandas.DataFrame`.
        :param schema: a :class:`StructType` or list of column names. default None.
        :param samplingRatio: the sample ratio of rows used for inferring

        >>> l = [('Alice', 1)]
        >>> sqlContext.createDataFrame(l).collect()
        [Row(_1=u'Alice', _2=1)]
        >>> sqlContext.createDataFrame(l, ['name', 'age']).collect()
        [Row(name=u'Alice', age=1)]

        >>> d = [{'name': 'Alice', 'age': 1}]
        >>> sqlContext.createDataFrame(d).collect()
        [Row(age=1, name=u'Alice')]

        >>> rdd = sc.parallelize(l)
        >>> sqlContext.createDataFrame(rdd).collect()
        [Row(_1=u'Alice', _2=1)]
        >>> df = sqlContext.createDataFrame(rdd, ['name', 'age'])
        >>> df.collect()
        [Row(name=u'Alice', age=1)]

        >>> from pyspark.sql import Row
        >>> Person = Row('name', 'age')
        >>> person = rdd.map(lambda r: Person(*r))
        >>> df2 = sqlContext.createDataFrame(person)
        >>> df2.collect()
        [Row(name=u'Alice', age=1)]

        >>> from pyspark.sql.types import *
        >>> schema = StructType([
        ...    StructField("name", StringType(), True),
        ...    StructField("age", IntegerType(), True)])
        >>> df3 = sqlContext.createDataFrame(rdd, schema)
        >>> df3.collect()
        [Row(name=u'Alice', age=1)]

        >>> sqlContext.createDataFrame(df.toPandas()).collect()  # doctest: +SKIP
        [Row(name=u'Alice', age=1)]
        >>> sqlContext.createDataFrame(pandas.DataFrame([[1, 2]]).collect())  # doctest: +SKIP
        [Row(0=1, 1=2)]
        """
        if isinstance(data, DataFrame):
            raise TypeError("data is already a DataFrame")

        if has_pandas and isinstance(data, pandas.DataFrame):
            if schema is None:
                schema = [str(x) for x in data.columns]
            data = [r.tolist() for r in data.to_records(index=False)]

        if not isinstance(data, RDD):
            try:
                # data could be list, tuple, generator ...
                rdd = self._sc.parallelize(data)
            except Exception:
                raise ValueError("cannot create an RDD from type: %s" % type(data))
        else:
            rdd = data

        if schema is None:
            schema = self._inferSchema(rdd, samplingRatio)
            converter = _create_converter(schema)
            rdd = rdd.map(converter)

        if isinstance(schema, (list, tuple)):
            first = rdd.first()
            if not isinstance(first, (list, tuple)):
                raise ValueError("each row in `rdd` should be list or tuple, "
                                 "but got %r" % type(first))
            row_cls = Row(*schema)
            schema = self._inferSchema(rdd.map(lambda r: row_cls(*r)), samplingRatio)

        # take the first few rows to verify schema
        rows = rdd.take(10)
        # Row() cannot been deserialized by Pyrolite
        if rows and isinstance(rows[0], tuple) and rows[0].__class__.__name__ == 'Row':
            rdd = rdd.map(tuple)
            rows = rdd.take(10)

        for row in rows:
            _verify_type(row, schema)

        # convert python objects to sql data
        converter = _python_to_sql_converter(schema)
        rdd = rdd.map(converter)
#.........这里部分代码省略.........
开发者ID:fangfangchen-spark,项目名称:spark,代码行数:101,代码来源:context.py

示例6: prepare

 def prepare(obj):
     _verify_type(obj, datatype)
     return (obj, )
开发者ID:GIladland,项目名称:spark,代码行数:3,代码来源:session.py

示例7: applySchema

    def applySchema(self, rdd, schema):
        """
        Applies the given schema to the given RDD of L{tuple} or L{list}.

        ::note:
            Deprecated in 1.3, use :func:`createDataFrame` instead

        These tuples or lists can contain complex nested structures like
        lists, maps or nested rows.

        The schema should be a StructType.

        It is important that the schema matches the types of the objects
        in each row or exceptions could be thrown at runtime.

        >>> from pyspark.sql.types import *
        >>> rdd2 = sc.parallelize([(1, "row1"), (2, "row2"), (3, "row3")])
        >>> schema = StructType([StructField("field1", IntegerType(), False),
        ...     StructField("field2", StringType(), False)])
        >>> df = sqlCtx.applySchema(rdd2, schema)
        >>> sqlCtx.registerRDDAsTable(df, "table1")
        >>> df2 = sqlCtx.sql("SELECT * from table1")
        >>> df2.collect()
        [Row(field1=1, field2=u'row1'),..., Row(field1=3, field2=u'row3')]

        >>> from datetime import date, datetime
        >>> rdd = sc.parallelize([(127, -128L, -32768, 32767, 2147483647L, 1.0,
        ...     date(2010, 1, 1),
        ...     datetime(2010, 1, 1, 1, 1, 1),
        ...     {"a": 1}, (2,), [1, 2, 3], None)])
        >>> schema = StructType([
        ...     StructField("byte1", ByteType(), False),
        ...     StructField("byte2", ByteType(), False),
        ...     StructField("short1", ShortType(), False),
        ...     StructField("short2", ShortType(), False),
        ...     StructField("int", IntegerType(), False),
        ...     StructField("float", FloatType(), False),
        ...     StructField("date", DateType(), False),
        ...     StructField("time", TimestampType(), False),
        ...     StructField("map",
        ...         MapType(StringType(), IntegerType(), False), False),
        ...     StructField("struct",
        ...         StructType([StructField("b", ShortType(), False)]), False),
        ...     StructField("list", ArrayType(ByteType(), False), False),
        ...     StructField("null", DoubleType(), True)])
        >>> df = sqlCtx.applySchema(rdd, schema)
        >>> results = df.map(
        ...     lambda x: (x.byte1, x.byte2, x.short1, x.short2, x.int, x.float, x.date,
        ...         x.time, x.map["a"], x.struct.b, x.list, x.null))
        >>> results.collect()[0] # doctest: +NORMALIZE_WHITESPACE
        (127, -128, -32768, 32767, 2147483647, 1.0, datetime.date(2010, 1, 1),
             datetime.datetime(2010, 1, 1, 1, 1, 1), 1, 2, [1, 2, 3], None)

        >>> df.registerTempTable("table2")
        >>> sqlCtx.sql(
        ...   "SELECT byte1 - 1 AS byte1, byte2 + 1 AS byte2, " +
        ...     "short1 + 1 AS short1, short2 - 1 AS short2, int - 1 AS int, " +
        ...     "float + 1.5 as float FROM table2").collect()
        [Row(byte1=126, byte2=-127, short1=-32767, short2=32766, int=2147483646, float=2.5)]

        >>> from pyspark.sql.types import _parse_schema_abstract, _infer_schema_type
        >>> rdd = sc.parallelize([(127, -32768, 1.0,
        ...     datetime(2010, 1, 1, 1, 1, 1),
        ...     {"a": 1}, (2,), [1, 2, 3])])
        >>> abstract = "byte short float time map{} struct(b) list[]"
        >>> schema = _parse_schema_abstract(abstract)
        >>> typedSchema = _infer_schema_type(rdd.first(), schema)
        >>> df = sqlCtx.applySchema(rdd, typedSchema)
        >>> df.collect()
        [Row(byte=127, short=-32768, float=1.0, time=..., list=[1, 2, 3])]
        """

        if isinstance(rdd, DataFrame):
            raise TypeError("Cannot apply schema to DataFrame")

        if not isinstance(schema, StructType):
            raise TypeError("schema should be StructType, but got %s" % schema)

        # take the first few rows to verify schema
        rows = rdd.take(10)
        # Row() cannot been deserialized by Pyrolite
        if rows and isinstance(rows[0], tuple) and rows[0].__class__.__name__ == 'Row':
            rdd = rdd.map(tuple)
            rows = rdd.take(10)

        for row in rows:
            _verify_type(row, schema)

        # convert python objects to sql data
        converter = _python_to_sql_converter(schema)
        rdd = rdd.map(converter)

        jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd())
        df = self._ssql_ctx.applySchemaToPythonRDD(jrdd.rdd(), schema.json())
        return DataFrame(df, self)
开发者ID:Liuchang0812,项目名称:spark,代码行数:95,代码来源:context.py


注:本文中的pyspark.sql.types._verify_type函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。