当前位置: 首页>>代码示例>>Python>>正文


Python types._create_converter函数代码示例

本文整理汇总了Python中pyspark.sql.types._create_converter函数的典型用法代码示例。如果您正苦于以下问题:Python _create_converter函数的具体用法?Python _create_converter怎么用?Python _create_converter使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了_create_converter函数的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _createFromRDD

    def _createFromRDD(self, rdd, schema, samplingRatio):
        """
        Create an RDD for DataFrame from an existing RDD, returns the RDD and schema.
        """
        if schema is None or isinstance(schema, (list, tuple)):
            struct = self._inferSchema(rdd, samplingRatio)
            converter = _create_converter(struct)
            rdd = rdd.map(converter)
            if isinstance(schema, (list, tuple)):
                for i, name in enumerate(schema):
                    struct.fields[i].name = name
                    struct.names[i] = name
            schema = struct

        elif isinstance(schema, StructType):
            # take the first few rows to verify schema
            rows = rdd.take(10)
            for row in rows:
                _verify_type(row, schema)

        else:
            raise TypeError("schema should be StructType or list or None, but got: %s" % schema)

        # convert python objects to sql data
        rdd = rdd.map(schema.toInternal)
        return rdd, schema
开发者ID:EntilZha,项目名称:spark,代码行数:26,代码来源:context.py

示例2: _createFromLocal

    def _createFromLocal(self, data, schema):
        """
        Create an RDD for DataFrame from a list or pandas.DataFrame, returns
        the RDD and schema.
        """
        # make sure data could consumed multiple times
        if not isinstance(data, list):
            data = list(data)

        if schema is None or isinstance(schema, (list, tuple)):
            struct = self._inferSchemaFromList(data, names=schema)
            converter = _create_converter(struct)
            data = map(converter, data)
            if isinstance(schema, (list, tuple)):
                for i, name in enumerate(schema):
                    struct.fields[i].name = name
                    struct.names[i] = name
            schema = struct

        elif not isinstance(schema, StructType):
            raise TypeError("schema should be StructType or list or None, but got: %s" % schema)

        # convert python objects to sql data
        data = [schema.toInternal(row) for row in data]
        return self._sc.parallelize(data), schema
开发者ID:CodingCat,项目名称:spark,代码行数:25,代码来源:session.py

示例3: inferSchema

    def inferSchema(self, rdd, samplingRatio=None):
        """Infer and apply a schema to an RDD of L{Row}.

        ::note:
            Deprecated in 1.3, use :func:`createDataFrame` instead

        When samplingRatio is specified, the schema is inferred by looking
        at the types of each row in the sampled dataset. Otherwise, the
        first 100 rows of the RDD are inspected. Nested collections are
        supported, which can include array, dict, list, Row, tuple,
        namedtuple, or object.

        Each row could be L{pyspark.sql.Row} object or namedtuple or objects.
        Using top level dicts is deprecated, as dict is used to represent Maps.

        If a single column has multiple distinct inferred types, it may cause
        runtime exceptions.

        >>> rdd = sc.parallelize(
        ...     [Row(field1=1, field2="row1"),
        ...      Row(field1=2, field2="row2"),
        ...      Row(field1=3, field2="row3")])
        >>> df = sqlCtx.inferSchema(rdd)
        >>> df.collect()[0]
        Row(field1=1, field2=u'row1')
        """

        if isinstance(rdd, DataFrame):
            raise TypeError("Cannot apply schema to DataFrame")

        schema = self._inferSchema(rdd, samplingRatio)
        converter = _create_converter(schema)
        rdd = rdd.map(converter)
        return self.applySchema(rdd, schema)
开发者ID:FrankWalter,项目名称:sparkOsr,代码行数:34,代码来源:context.py

示例4: createDataFrame

    def createDataFrame(self, data, schema=None, samplingRatio=None):
        """
        Creates a :class:`DataFrame` from an :class:`RDD` of :class:`tuple`/:class:`list`,
        list or :class:`pandas.DataFrame`.

        When ``schema`` is a list of column names, the type of each column
        will be inferred from ``data``.

        When ``schema`` is ``None``, it will try to infer the schema (column names and types)
        from ``data``, which should be an RDD of :class:`Row`,
        or :class:`namedtuple`, or :class:`dict`.

        If schema inference is needed, ``samplingRatio`` is used to determined the ratio of
        rows used for schema inference. The first row will be used if ``samplingRatio`` is ``None``.

        :param data: an RDD of :class:`Row`/:class:`tuple`/:class:`list`/:class:`dict`,
            :class:`list`, or :class:`pandas.DataFrame`.
        :param schema: a :class:`StructType` or list of column names. default None.
        :param samplingRatio: the sample ratio of rows used for inferring

        >>> l = [('Alice', 1)]
        >>> sqlContext.createDataFrame(l).collect()
        [Row(_1=u'Alice', _2=1)]
        >>> sqlContext.createDataFrame(l, ['name', 'age']).collect()
        [Row(name=u'Alice', age=1)]

        >>> d = [{'name': 'Alice', 'age': 1}]
        >>> sqlContext.createDataFrame(d).collect()
        [Row(age=1, name=u'Alice')]

        >>> rdd = sc.parallelize(l)
        >>> sqlContext.createDataFrame(rdd).collect()
        [Row(_1=u'Alice', _2=1)]
        >>> df = sqlContext.createDataFrame(rdd, ['name', 'age'])
        >>> df.collect()
        [Row(name=u'Alice', age=1)]

        >>> from pyspark.sql import Row
        >>> Person = Row('name', 'age')
        >>> person = rdd.map(lambda r: Person(*r))
        >>> df2 = sqlContext.createDataFrame(person)
        >>> df2.collect()
        [Row(name=u'Alice', age=1)]

        >>> from pyspark.sql.types import *
        >>> schema = StructType([
        ...    StructField("name", StringType(), True),
        ...    StructField("age", IntegerType(), True)])
        >>> df3 = sqlContext.createDataFrame(rdd, schema)
        >>> df3.collect()
        [Row(name=u'Alice', age=1)]

        >>> sqlContext.createDataFrame(df.toPandas()).collect()  # doctest: +SKIP
        [Row(name=u'Alice', age=1)]
        >>> sqlContext.createDataFrame(pandas.DataFrame([[1, 2]]).collect())  # doctest: +SKIP
        [Row(0=1, 1=2)]
        """
        if isinstance(data, DataFrame):
            raise TypeError("data is already a DataFrame")

        if has_pandas and isinstance(data, pandas.DataFrame):
            if schema is None:
                schema = [str(x) for x in data.columns]
            data = [r.tolist() for r in data.to_records(index=False)]

        if not isinstance(data, RDD):
            try:
                # data could be list, tuple, generator ...
                rdd = self._sc.parallelize(data)
            except Exception:
                raise ValueError("cannot create an RDD from type: %s" % type(data))
        else:
            rdd = data

        if schema is None:
            schema = self._inferSchema(rdd, samplingRatio)
            converter = _create_converter(schema)
            rdd = rdd.map(converter)

        if isinstance(schema, (list, tuple)):
            first = rdd.first()
            if not isinstance(first, (list, tuple)):
                raise ValueError("each row in `rdd` should be list or tuple, "
                                 "but got %r" % type(first))
            row_cls = Row(*schema)
            schema = self._inferSchema(rdd.map(lambda r: row_cls(*r)), samplingRatio)

        # take the first few rows to verify schema
        rows = rdd.take(10)
        # Row() cannot been deserialized by Pyrolite
        if rows and isinstance(rows[0], tuple) and rows[0].__class__.__name__ == 'Row':
            rdd = rdd.map(tuple)
            rows = rdd.take(10)

        for row in rows:
            _verify_type(row, schema)

        # convert python objects to sql data
        converter = _python_to_sql_converter(schema)
        rdd = rdd.map(converter)
#.........这里部分代码省略.........
开发者ID:fangfangchen-spark,项目名称:spark,代码行数:101,代码来源:context.py

示例5: inferSchema

    def inferSchema(self, rdd, samplingRatio=None):
        """Infer and apply a schema to an RDD of L{Row}.

        When samplingRatio is specified, the schema is inferred by looking
        at the types of each row in the sampled dataset. Otherwise, the
        first 100 rows of the RDD are inspected. Nested collections are
        supported, which can include array, dict, list, Row, tuple,
        namedtuple, or object.

        Each row could be L{pyspark.sql.Row} object or namedtuple or objects.
        Using top level dicts is deprecated, as dict is used to represent Maps.

        If a single column has multiple distinct inferred types, it may cause
        runtime exceptions.

        >>> rdd = sc.parallelize(
        ...     [Row(field1=1, field2="row1"),
        ...      Row(field1=2, field2="row2"),
        ...      Row(field1=3, field2="row3")])
        >>> df = sqlCtx.inferSchema(rdd)
        >>> df.collect()[0]
        Row(field1=1, field2=u'row1')

        >>> NestedRow = Row("f1", "f2")
        >>> nestedRdd1 = sc.parallelize([
        ...     NestedRow(array('i', [1, 2]), {"row1": 1.0}),
        ...     NestedRow(array('i', [2, 3]), {"row2": 2.0})])
        >>> df = sqlCtx.inferSchema(nestedRdd1)
        >>> df.collect()
        [Row(f1=[1, 2], f2={u'row1': 1.0}), ..., f2={u'row2': 2.0})]

        >>> nestedRdd2 = sc.parallelize([
        ...     NestedRow([[1, 2], [2, 3]], [1, 2]),
        ...     NestedRow([[2, 3], [3, 4]], [2, 3])])
        >>> df = sqlCtx.inferSchema(nestedRdd2)
        >>> df.collect()
        [Row(f1=[[1, 2], [2, 3]], f2=[1, 2]), ..., f2=[2, 3])]

        >>> from collections import namedtuple
        >>> CustomRow = namedtuple('CustomRow', 'field1 field2')
        >>> rdd = sc.parallelize(
        ...     [CustomRow(field1=1, field2="row1"),
        ...      CustomRow(field1=2, field2="row2"),
        ...      CustomRow(field1=3, field2="row3")])
        >>> df = sqlCtx.inferSchema(rdd)
        >>> df.collect()[0]
        Row(field1=1, field2=u'row1')
        """

        if isinstance(rdd, DataFrame):
            raise TypeError("Cannot apply schema to DataFrame")

        first = rdd.first()
        if not first:
            raise ValueError("The first row in RDD is empty, "
                             "can not infer schema")
        if type(first) is dict:
            warnings.warn("Using RDD of dict to inferSchema is deprecated,"
                          "please use pyspark.sql.Row instead")

        if samplingRatio is None:
            schema = _infer_schema(first)
            if _has_nulltype(schema):
                for row in rdd.take(100)[1:]:
                    schema = _merge_type(schema, _infer_schema(row))
                    if not _has_nulltype(schema):
                        break
                else:
                    warnings.warn("Some of types cannot be determined by the "
                                  "first 100 rows, please try again with sampling")
        else:
            if samplingRatio > 0.99:
                rdd = rdd.sample(False, float(samplingRatio))
            schema = rdd.map(_infer_schema).reduce(_merge_type)

        converter = _create_converter(schema)
        rdd = rdd.map(converter)
        return self.applySchema(rdd, schema)
开发者ID:MLDL,项目名称:spark,代码行数:78,代码来源:context.py


注:本文中的pyspark.sql.types._create_converter函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。