当前位置: 首页>>代码示例>>Python>>正文


Python DataFrame._schema方法代码示例

本文整理汇总了Python中pyspark.sql.dataframe.DataFrame._schema方法的典型用法代码示例。如果您正苦于以下问题:Python DataFrame._schema方法的具体用法?Python DataFrame._schema怎么用?Python DataFrame._schema使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pyspark.sql.dataframe.DataFrame的用法示例。


在下文中一共展示了DataFrame._schema方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _create_from_pandas_with_arrow

# 需要导入模块: from pyspark.sql.dataframe import DataFrame [as 别名]
# 或者: from pyspark.sql.dataframe.DataFrame import _schema [as 别名]
    def _create_from_pandas_with_arrow(self, pdf, schema, timezone):
        """
        Create a DataFrame from a given pandas.DataFrame by slicing it into partitions, converting
        to Arrow data, then sending to the JVM to parallelize. If a schema is passed in, the
        data types will be used to coerce the data in Pandas to Arrow conversion.
        """
        from pyspark.serializers import ArrowStreamSerializer, _create_batch
        from pyspark.sql.types import from_arrow_schema, to_arrow_type, TimestampType
        from pyspark.sql.utils import require_minimum_pandas_version, \
            require_minimum_pyarrow_version

        require_minimum_pandas_version()
        require_minimum_pyarrow_version()

        from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype

        # Determine arrow types to coerce data when creating batches
        if isinstance(schema, StructType):
            arrow_types = [to_arrow_type(f.dataType) for f in schema.fields]
        elif isinstance(schema, DataType):
            raise ValueError("Single data type %s is not supported with Arrow" % str(schema))
        else:
            # Any timestamps must be coerced to be compatible with Spark
            arrow_types = [to_arrow_type(TimestampType())
                           if is_datetime64_dtype(t) or is_datetime64tz_dtype(t) else None
                           for t in pdf.dtypes]

        # Slice the DataFrame to be batched
        step = -(-len(pdf) // self.sparkContext.defaultParallelism)  # round int up
        pdf_slices = (pdf[start:start + step] for start in xrange(0, len(pdf), step))

        # Create Arrow record batches
        safecheck = self._wrapped._conf.arrowSafeTypeConversion()
        batches = [_create_batch([(c, t) for (_, c), t in zip(pdf_slice.iteritems(), arrow_types)],
                                 timezone, safecheck)
                   for pdf_slice in pdf_slices]

        # Create the Spark schema from the first Arrow batch (always at least 1 batch after slicing)
        if isinstance(schema, (list, tuple)):
            struct = from_arrow_schema(batches[0].schema)
            for i, name in enumerate(schema):
                struct.fields[i].name = name
                struct.names[i] = name
            schema = struct

        jsqlContext = self._wrapped._jsqlContext

        def reader_func(temp_filename):
            return self._jvm.PythonSQLUtils.readArrowStreamFromFile(jsqlContext, temp_filename)

        def create_RDD_server():
            return self._jvm.ArrowRDDServer(jsqlContext)

        # Create Spark DataFrame from Arrow stream file, using one batch per partition
        jrdd = self._sc._serialize_to_jvm(batches, ArrowStreamSerializer(), reader_func,
                                          create_RDD_server)
        jdf = self._jvm.PythonSQLUtils.toDataFrame(jrdd, schema.json(), jsqlContext)
        df = DataFrame(jdf, self._wrapped)
        df._schema = schema
        return df
开发者ID:CodingCat,项目名称:spark,代码行数:62,代码来源:session.py

示例2: _create_from_pandas_with_arrow

# 需要导入模块: from pyspark.sql.dataframe import DataFrame [as 别名]
# 或者: from pyspark.sql.dataframe.DataFrame import _schema [as 别名]
    def _create_from_pandas_with_arrow(self, pdf, schema, timezone):
        """
        Create a DataFrame from a given pandas.DataFrame by slicing it into partitions, converting
        to Arrow data, then sending to the JVM to parallelize. If a schema is passed in, the
        data types will be used to coerce the data in Pandas to Arrow conversion.
        """
        from pyspark.serializers import ArrowSerializer, _create_batch
        from pyspark.sql.types import from_arrow_schema, to_arrow_type, \
            _old_pandas_exception_message, TimestampType
        from pyspark.sql.utils import _require_minimum_pyarrow_version
        try:
            from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype
        except ImportError as e:
            raise ImportError(_old_pandas_exception_message(e))

        _require_minimum_pyarrow_version()

        # Determine arrow types to coerce data when creating batches
        if isinstance(schema, StructType):
            arrow_types = [to_arrow_type(f.dataType) for f in schema.fields]
        elif isinstance(schema, DataType):
            raise ValueError("Single data type %s is not supported with Arrow" % str(schema))
        else:
            # Any timestamps must be coerced to be compatible with Spark
            arrow_types = [to_arrow_type(TimestampType())
                           if is_datetime64_dtype(t) or is_datetime64tz_dtype(t) else None
                           for t in pdf.dtypes]

        # Slice the DataFrame to be batched
        step = -(-len(pdf) // self.sparkContext.defaultParallelism)  # round int up
        pdf_slices = (pdf[start:start + step] for start in xrange(0, len(pdf), step))

        # Create Arrow record batches
        batches = [_create_batch([(c, t) for (_, c), t in zip(pdf_slice.iteritems(), arrow_types)],
                                 timezone)
                   for pdf_slice in pdf_slices]

        # Create the Spark schema from the first Arrow batch (always at least 1 batch after slicing)
        if isinstance(schema, (list, tuple)):
            struct = from_arrow_schema(batches[0].schema)
            for i, name in enumerate(schema):
                struct.fields[i].name = name
                struct.names[i] = name
            schema = struct

        # Create the Spark DataFrame directly from the Arrow data and schema
        jrdd = self._sc._serialize_to_jvm(batches, len(batches), ArrowSerializer())
        jdf = self._jvm.PythonSQLUtils.arrowPayloadToDataFrame(
            jrdd, schema.json(), self._wrapped._jsqlContext)
        df = DataFrame(jdf, self._wrapped)
        df._schema = schema
        return df
开发者ID:aa8y,项目名称:spark,代码行数:54,代码来源:session.py

示例3: createDataFrame

# 需要导入模块: from pyspark.sql.dataframe import DataFrame [as 别名]
# 或者: from pyspark.sql.dataframe.DataFrame import _schema [as 别名]
def createDataFrame(sqlc, data, schema, samplingRatio=None):
    """ Our own version of spark.sql.session.createDataFrame which doesn't validate the schema.
        See https://issues.apache.org/jira/browse/SPARK-16700
    """
    # pylint: disable=protected-access

    self = sqlc.sparkSession

    if isinstance(data, RDD):
        rdd, schema = self._createFromRDD(data, schema, samplingRatio)
    else:
        rdd, schema = self._createFromLocal(data, schema)

    jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd())
    jdf = self._jsparkSession.applySchemaToPythonRDD(jrdd.rdd(), schema.json())
    df = DataFrame(jdf, self._wrapped)
    df._schema = schema
    return df
开发者ID:commonsearch,项目名称:cosr-back,代码行数:20,代码来源:spark.py

示例4: createDataFrame

# 需要导入模块: from pyspark.sql.dataframe import DataFrame [as 别名]
# 或者: from pyspark.sql.dataframe.DataFrame import _schema [as 别名]
    def createDataFrame(self, data, schema=None, samplingRatio=None):
        """
        Creates a :class:`DataFrame` from an :class:`RDD` of :class:`tuple`/:class:`list`,
        list or :class:`pandas.DataFrame`.

        When ``schema`` is a list of column names, the type of each column
        will be inferred from ``data``.

        When ``schema`` is ``None``, it will try to infer the schema (column names and types)
        from ``data``, which should be an RDD of :class:`Row`,
        or :class:`namedtuple`, or :class:`dict`.

        If schema inference is needed, ``samplingRatio`` is used to determined the ratio of
        rows used for schema inference. The first row will be used if ``samplingRatio`` is ``None``.

        :param data: an RDD of :class:`Row`/:class:`tuple`/:class:`list`/:class:`dict`,
            :class:`list`, or :class:`pandas.DataFrame`.
        :param schema: a :class:`StructType` or list of column names. default None.
        :param samplingRatio: the sample ratio of rows used for inferring
        :return: :class:`DataFrame`

        >>> l = [('Alice', 1)]
        >>> sqlContext.createDataFrame(l).collect()
        [Row(_1=u'Alice', _2=1)]
        >>> sqlContext.createDataFrame(l, ['name', 'age']).collect()
        [Row(name=u'Alice', age=1)]

        >>> d = [{'name': 'Alice', 'age': 1}]
        >>> sqlContext.createDataFrame(d).collect()
        [Row(age=1, name=u'Alice')]

        >>> rdd = sc.parallelize(l)
        >>> sqlContext.createDataFrame(rdd).collect()
        [Row(_1=u'Alice', _2=1)]
        >>> df = sqlContext.createDataFrame(rdd, ['name', 'age'])
        >>> df.collect()
        [Row(name=u'Alice', age=1)]

        >>> from pyspark.sql import Row
        >>> Person = Row('name', 'age')
        >>> person = rdd.map(lambda r: Person(*r))
        >>> df2 = sqlContext.createDataFrame(person)
        >>> df2.collect()
        [Row(name=u'Alice', age=1)]

        >>> from pyspark.sql.types import *
        >>> schema = StructType([
        ...    StructField("name", StringType(), True),
        ...    StructField("age", IntegerType(), True)])
        >>> df3 = sqlContext.createDataFrame(rdd, schema)
        >>> df3.collect()
        [Row(name=u'Alice', age=1)]

        >>> sqlContext.createDataFrame(df.toPandas()).collect()  # doctest: +SKIP
        [Row(name=u'Alice', age=1)]
        >>> sqlContext.createDataFrame(pandas.DataFrame([[1, 2]]).collect())  # doctest: +SKIP
        [Row(0=1, 1=2)]
        """
        if isinstance(data, DataFrame):
            raise TypeError("data is already a DataFrame")

        if isinstance(data, RDD):
            rdd, schema = self._createFromRDD(data, schema, samplingRatio)
        else:
            rdd, schema = self._createFromLocal(data, schema)
        jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd())
        jdf = self._ssql_ctx.applySchemaToPythonRDD(jrdd.rdd(), schema.json())
        df = DataFrame(jdf, self)
        df._schema = schema
        return df
开发者ID:EntilZha,项目名称:spark,代码行数:72,代码来源:context.py

示例5: createDataFrame

# 需要导入模块: from pyspark.sql.dataframe import DataFrame [as 别名]
# 或者: from pyspark.sql.dataframe.DataFrame import _schema [as 别名]

#.........这里部分代码省略.........
            etc.), or :class:`list`, or :class:`pandas.DataFrame`.
        :param schema: a :class:`DataType` or a datatype string or a list of column names, default
            is None.  The data type string format equals to `DataType.simpleString`, except that
            top level struct type can omit the `struct<>` and atomic types use `typeName()` as
            their format, e.g. use `byte` instead of `tinyint` for ByteType. We can also use `int`
            as a short name for IntegerType.
        :param samplingRatio: the sample ratio of rows used for inferring
        :return: :class:`DataFrame`

        .. versionchanged:: 2.0
           The schema parameter can be a DataType or a datatype string after 2.0. If it's not a
           StructType, it will be wrapped into a StructType and each record will also be wrapped
           into a tuple.

        >>> l = [('Alice', 1)]
        >>> spark.createDataFrame(l).collect()
        [Row(_1=u'Alice', _2=1)]
        >>> spark.createDataFrame(l, ['name', 'age']).collect()
        [Row(name=u'Alice', age=1)]

        >>> d = [{'name': 'Alice', 'age': 1}]
        >>> spark.createDataFrame(d).collect()
        [Row(age=1, name=u'Alice')]

        >>> rdd = sc.parallelize(l)
        >>> spark.createDataFrame(rdd).collect()
        [Row(_1=u'Alice', _2=1)]
        >>> df = spark.createDataFrame(rdd, ['name', 'age'])
        >>> df.collect()
        [Row(name=u'Alice', age=1)]

        >>> from pyspark.sql import Row
        >>> Person = Row('name', 'age')
        >>> person = rdd.map(lambda r: Person(*r))
        >>> df2 = spark.createDataFrame(person)
        >>> df2.collect()
        [Row(name=u'Alice', age=1)]

        >>> from pyspark.sql.types import *
        >>> schema = StructType([
        ...    StructField("name", StringType(), True),
        ...    StructField("age", IntegerType(), True)])
        >>> df3 = spark.createDataFrame(rdd, schema)
        >>> df3.collect()
        [Row(name=u'Alice', age=1)]

        >>> spark.createDataFrame(df.toPandas()).collect()  # doctest: +SKIP
        [Row(name=u'Alice', age=1)]
        >>> spark.createDataFrame(pandas.DataFrame([[1, 2]])).collect()  # doctest: +SKIP
        [Row(0=1, 1=2)]

        >>> spark.createDataFrame(rdd, "a: string, b: int").collect()
        [Row(a=u'Alice', b=1)]
        >>> rdd = rdd.map(lambda row: row[1])
        >>> spark.createDataFrame(rdd, "int").collect()
        [Row(value=1)]
        >>> spark.createDataFrame(rdd, "boolean").collect() # doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
            ...
        Py4JJavaError: ...
        """
        if isinstance(data, DataFrame):
            raise TypeError("data is already a DataFrame")

        if isinstance(schema, basestring):
            schema = _parse_datatype_string(schema)

        try:
            import pandas
            has_pandas = True
        except Exception:
            has_pandas = False
        if has_pandas and isinstance(data, pandas.DataFrame):
            if schema is None:
                schema = [str(x) for x in data.columns]
            data = [r.tolist() for r in data.to_records(index=False)]

        if isinstance(schema, StructType):
            def prepare(obj):
                _verify_type(obj, schema)
                return obj
        elif isinstance(schema, DataType):
            datatype = schema

            def prepare(obj):
                _verify_type(obj, datatype)
                return (obj, )
            schema = StructType().add("value", datatype)
        else:
            prepare = lambda obj: obj

        if isinstance(data, RDD):
            rdd, schema = self._createFromRDD(data.map(prepare), schema, samplingRatio)
        else:
            rdd, schema = self._createFromLocal(map(prepare, data), schema)
        jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd())
        jdf = self._jsparkSession.applySchemaToPythonRDD(jrdd.rdd(), schema.json())
        df = DataFrame(jdf, self._wrapped)
        df._schema = schema
        return df
开发者ID:GIladland,项目名称:spark,代码行数:104,代码来源:session.py

示例6: createDataFrame

# 需要导入模块: from pyspark.sql.dataframe import DataFrame [as 别名]
# 或者: from pyspark.sql.dataframe.DataFrame import _schema [as 别名]

#.........这里部分代码省略.........
        >>> spark.createDataFrame(df.toPandas()).collect()  # doctest: +SKIP
        [Row(name=u'Alice', age=1)]
        >>> spark.createDataFrame(pandas.DataFrame([[1, 2]])).collect()  # doctest: +SKIP
        [Row(0=1, 1=2)]

        >>> spark.createDataFrame(rdd, "a: string, b: int").collect()
        [Row(a=u'Alice', b=1)]
        >>> rdd = rdd.map(lambda row: row[1])
        >>> spark.createDataFrame(rdd, "int").collect()
        [Row(value=1)]
        >>> spark.createDataFrame(rdd, "boolean").collect() # doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
            ...
        Py4JJavaError: ...
        """
        SparkSession._activeSession = self
        self._jvm.SparkSession.setActiveSession(self._jsparkSession)
        if isinstance(data, DataFrame):
            raise TypeError("data is already a DataFrame")

        if isinstance(schema, basestring):
            schema = _parse_datatype_string(schema)
        elif isinstance(schema, (list, tuple)):
            # Must re-encode any unicode strings to be consistent with StructField names
            schema = [x.encode('utf-8') if not isinstance(x, str) else x for x in schema]

        try:
            import pandas
            has_pandas = True
        except Exception:
            has_pandas = False
        if has_pandas and isinstance(data, pandas.DataFrame):
            from pyspark.sql.utils import require_minimum_pandas_version
            require_minimum_pandas_version()

            if self._wrapped._conf.pandasRespectSessionTimeZone():
                timezone = self._wrapped._conf.sessionLocalTimeZone()
            else:
                timezone = None

            # If no schema supplied by user then get the names of columns only
            if schema is None:
                schema = [str(x) if not isinstance(x, basestring) else
                          (x.encode('utf-8') if not isinstance(x, str) else x)
                          for x in data.columns]

            if self._wrapped._conf.arrowEnabled() and len(data) > 0:
                try:
                    return self._create_from_pandas_with_arrow(data, schema, timezone)
                except Exception as e:
                    from pyspark.util import _exception_message

                    if self._wrapped._conf.arrowFallbackEnabled():
                        msg = (
                            "createDataFrame attempted Arrow optimization because "
                            "'spark.sql.execution.arrow.enabled' is set to true; however, "
                            "failed by the reason below:\n  %s\n"
                            "Attempting non-optimization as "
                            "'spark.sql.execution.arrow.fallback.enabled' is set to "
                            "true." % _exception_message(e))
                        warnings.warn(msg)
                    else:
                        msg = (
                            "createDataFrame attempted Arrow optimization because "
                            "'spark.sql.execution.arrow.enabled' is set to true, but has reached "
                            "the error below and will not continue because automatic fallback "
                            "with 'spark.sql.execution.arrow.fallback.enabled' has been set to "
                            "false.\n  %s" % _exception_message(e))
                        warnings.warn(msg)
                        raise
            data = self._convert_from_pandas(data, schema, timezone)

        if isinstance(schema, StructType):
            verify_func = _make_type_verifier(schema) if verifySchema else lambda _: True

            def prepare(obj):
                verify_func(obj)
                return obj
        elif isinstance(schema, DataType):
            dataType = schema
            schema = StructType().add("value", schema)

            verify_func = _make_type_verifier(
                dataType, name="field value") if verifySchema else lambda _: True

            def prepare(obj):
                verify_func(obj)
                return obj,
        else:
            prepare = lambda obj: obj

        if isinstance(data, RDD):
            rdd, schema = self._createFromRDD(data.map(prepare), schema, samplingRatio)
        else:
            rdd, schema = self._createFromLocal(map(prepare, data), schema)
        jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd())
        jdf = self._jsparkSession.applySchemaToPythonRDD(jrdd.rdd(), schema.json())
        df = DataFrame(jdf, self._wrapped)
        df._schema = schema
        return df
开发者ID:CodingCat,项目名称:spark,代码行数:104,代码来源:session.py

示例7: _create_from_pandas_with_arrow

# 需要导入模块: from pyspark.sql.dataframe import DataFrame [as 别名]
# 或者: from pyspark.sql.dataframe.DataFrame import _schema [as 别名]
    def _create_from_pandas_with_arrow(self, pdf, schema, timezone):
        """
        Create a DataFrame from a given pandas.DataFrame by slicing it into partitions, converting
        to Arrow data, then sending to the JVM to parallelize. If a schema is passed in, the
        data types will be used to coerce the data in Pandas to Arrow conversion.
        """
        from distutils.version import LooseVersion
        from pyspark.serializers import ArrowStreamPandasSerializer
        from pyspark.sql.types import from_arrow_type, to_arrow_type, TimestampType
        from pyspark.sql.utils import require_minimum_pandas_version, \
            require_minimum_pyarrow_version

        require_minimum_pandas_version()
        require_minimum_pyarrow_version()

        from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype
        import pyarrow as pa

        # Create the Spark schema from list of names passed in with Arrow types
        if isinstance(schema, (list, tuple)):
            if LooseVersion(pa.__version__) < LooseVersion("0.12.0"):
                temp_batch = pa.RecordBatch.from_pandas(pdf[0:100], preserve_index=False)
                arrow_schema = temp_batch.schema
            else:
                arrow_schema = pa.Schema.from_pandas(pdf, preserve_index=False)
            struct = StructType()
            for name, field in zip(schema, arrow_schema):
                struct.add(name, from_arrow_type(field.type), nullable=field.nullable)
            schema = struct

        # Determine arrow types to coerce data when creating batches
        if isinstance(schema, StructType):
            arrow_types = [to_arrow_type(f.dataType) for f in schema.fields]
        elif isinstance(schema, DataType):
            raise ValueError("Single data type %s is not supported with Arrow" % str(schema))
        else:
            # Any timestamps must be coerced to be compatible with Spark
            arrow_types = [to_arrow_type(TimestampType())
                           if is_datetime64_dtype(t) or is_datetime64tz_dtype(t) else None
                           for t in pdf.dtypes]

        # Slice the DataFrame to be batched
        step = -(-len(pdf) // self.sparkContext.defaultParallelism)  # round int up
        pdf_slices = (pdf[start:start + step] for start in xrange(0, len(pdf), step))

        # Create list of Arrow (columns, type) for serializer dump_stream
        arrow_data = [[(c, t) for (_, c), t in zip(pdf_slice.iteritems(), arrow_types)]
                      for pdf_slice in pdf_slices]

        jsqlContext = self._wrapped._jsqlContext

        safecheck = self._wrapped._conf.arrowSafeTypeConversion()
        col_by_name = True  # col by name only applies to StructType columns, can't happen here
        ser = ArrowStreamPandasSerializer(timezone, safecheck, col_by_name)

        def reader_func(temp_filename):
            return self._jvm.PythonSQLUtils.readArrowStreamFromFile(jsqlContext, temp_filename)

        def create_RDD_server():
            return self._jvm.ArrowRDDServer(jsqlContext)

        # Create Spark DataFrame from Arrow stream file, using one batch per partition
        jrdd = self._sc._serialize_to_jvm(arrow_data, ser, reader_func, create_RDD_server)
        jdf = self._jvm.PythonSQLUtils.toDataFrame(jrdd, schema.json(), jsqlContext)
        df = DataFrame(jdf, self._wrapped)
        df._schema = schema
        return df
开发者ID:amolthacker,项目名称:spark,代码行数:69,代码来源:session.py


注:本文中的pyspark.sql.dataframe.DataFrame._schema方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。