当前位置: 首页>>代码示例>>Python>>正文


Python KDTree.query方法代码示例

本文整理汇总了Python中pysal.common.KDTree.query方法的典型用法代码示例。如果您正苦于以下问题:Python KDTree.query方法的具体用法?Python KDTree.query怎么用?Python KDTree.query使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pysal.common.KDTree的用法示例。


在下文中一共展示了KDTree.query方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: Kernel

# 需要导入模块: from pysal.common import KDTree [as 别名]
# 或者: from pysal.common.KDTree import query [as 别名]

#.........这里部分代码省略.........
        :class:`pysal.weights.Kernel`
        :class:`pysal.weights.W`
        """
        return cls(array, **kwargs)

    @classmethod
    def from_dataframe(cls, df, geom_col='geometry', ids=None, **kwargs):
        """
        Make Kernel weights from a dataframe.

        Parameters
        ----------
        df      :   pandas.dataframe
                    a dataframe with a geometry column that can be used to
                    construct a W object
        geom_col :   string
                    column name of the geometry stored in df
        ids     :   string or iterable
                    if string, the column name of the indices from the dataframe
                    if iterable, a list of ids to use for the W
                    if None, df.index is used.

        See Also
        --------
        :class:`pysal.weights.Kernel`
        :class:`pysal.weights.W`
        """
        pts = get_points_array(df[geom_col])
        if ids is None:
            ids = df.index.tolist()
        elif isinstance(ids, str):
            ids = df[ids].tolist()
        return cls(pts, ids=ids, **kwargs)

    def _k_to_W(self, ids=None):
        allneighbors = {}
        weights = {}
        if ids:
            ids = np.array(ids)
        else:
            ids = np.arange(len(self.data))
        for i, neighbors in enumerate(self.kernel):
            if len(self.neigh[i]) == 0:
                allneighbors[ids[i]] = []
                weights[ids[i]] = []
            else:
                allneighbors[ids[i]] = list(ids[self.neigh[i]])
                weights[ids[i]] = self.kernel[i].tolist()
        return allneighbors, weights

    def _set_bw(self):
        dmat, neigh = self.kdt.query(self.data, k=self.k)
        if self.fixed:
            # use max knn distance as bandwidth
            bandwidth = dmat.max() * self.eps
            n = len(dmat)
            self.bandwidth = np.ones((n, 1), 'float') * bandwidth
        else:
            # use local max knn distance
            self.bandwidth = dmat.max(axis=1) * self.eps
            self.bandwidth.shape = (self.bandwidth.size, 1)
            # identify knn neighbors for each point
            nnq = self.kdt.query(self.data, k=self.k)
            self.neigh = nnq[1]

    def _eval_kernel(self):
        # get points within bandwidth distance of each point
        if not hasattr(self, 'neigh'):
            kdtq = self.kdt.query_ball_point
            neighbors = [kdtq(self.data[i], r=bwi[0]) for i,
                         bwi in enumerate(self.bandwidth)]
            self.neigh = neighbors
        # get distances for neighbors
        bw = self.bandwidth

        kdtq = self.kdt.query
        z = []
        for i, nids in enumerate(self.neigh):
            di, ni = kdtq(self.data[i], k=len(nids))
            if not isinstance(di, np.ndarray):
                di = np.asarray([di] * len(nids))
                ni = np.asarray([ni] * len(nids))
            zi = np.array([dict(zip(ni, di))[nid] for nid in nids]) / bw[i]
            z.append(zi)
        zs = z
        # functions follow Anselin and Rey (2010) table 5.4
        if self.function == 'triangular':
            self.kernel = [1 - zi for zi in zs]
        elif self.function == 'uniform':
            self.kernel = [np.ones(zi.shape) * 0.5 for zi in zs]
        elif self.function == 'quadratic':
            self.kernel = [(3. / 4) * (1 - zi ** 2) for zi in zs]
        elif self.function == 'quartic':
            self.kernel = [(15. / 16) * (1 - zi ** 2) ** 2 for zi in zs]
        elif self.function == 'gaussian':
            c = np.pi * 2
            c = c ** (-0.5)
            self.kernel = [c * np.exp(-(zi ** 2) / 2.) for zi in zs]
        else:
            print('Unsupported kernel function', self.function)
开发者ID:lanselin,项目名称:pysal,代码行数:104,代码来源:Distance.py

示例2: KNN

# 需要导入模块: from pysal.common import KDTree [as 别名]
# 或者: from pysal.common.KDTree import query [as 别名]
class KNN(W):
    """
    Creates nearest neighbor weights matrix based on k nearest
    neighbors.

    Parameters
    ----------
    kdtree      : object
                  PySAL KDTree or ArcKDTree where KDtree.data is array (n,k)
                  n observations on k characteristics used to measure
                  distances between the n objects
    k           : int
                  number of nearest neighbors
    p           : float
                  Minkowski p-norm distance metric parameter:
                  1<=p<=infinity
                  2: Euclidean distance
                  1: Manhattan distance
                  Ignored if the KDTree is an ArcKDTree
    ids         : list
                  identifiers to attach to each observation

    Returns
    -------

    w         : W
                instance
                Weights object with binary weights

    Examples
    --------
    >>> points = [(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
    >>> kd = pysal.cg.kdtree.KDTree(np.array(points))
    >>> wnn2 = pysal.KNN(kd, 2)
    >>> [1,3] == wnn2.neighbors[0]
    True

    ids

    >>> wnn2 = KNN(kd,2)
    >>> wnn2[0]
    {1: 1.0, 3: 1.0}
    >>> wnn2[1]
    {0: 1.0, 3: 1.0}

    now with 1 rather than 0 offset

    >>> wnn2 = KNN(kd, 2, ids=range(1,7))
    >>> wnn2[1]
    {2: 1.0, 4: 1.0}
    >>> wnn2[2]
    {1: 1.0, 4: 1.0}
    >>> 0 in wnn2.neighbors
    False

    Notes
    -----

    Ties between neighbors of equal distance are arbitrarily broken.

    See Also
    --------
    :class:`pysal.weights.W`
    """
    def __init__(self, data, k=2, p=2, ids=None, radius=None, distance_metric='euclidean'):
        if isKDTree(data):
            self.kdtree = data
            self.data = data.data
        else:
            self.data = data
            self.kdtree = KDTree(data, radius=radius, distance_metric=distance_metric)
        self.k = k 
        self.p = p
        this_nnq = self.kdtree.query(self.data, k=k+1, p=p)
        
        to_weight = this_nnq[1]
        if ids is None:
            ids = list(range(to_weight.shape[0]))
        
        neighbors = {}
        for i,row in enumerate(to_weight):
            row = row.tolist()
            row.remove(i)
            row = [ids[j] for j in row]
            focal = ids[i]
            neighbors[focal] = row
        W.__init__(self, neighbors, id_order=ids)
    
    @classmethod
    def from_shapefile(cls, filepath, **kwargs):
        """
        Nearest neighbor weights from a shapefile.

        Parameters
        ----------

        data       : string
                     shapefile containing attribute data.
        k          : int
                     number of nearest neighbors
#.........这里部分代码省略.........
开发者ID:lanselin,项目名称:pysal,代码行数:103,代码来源:Distance.py

示例3: knnW

# 需要导入模块: from pysal.common import KDTree [as 别名]
# 或者: from pysal.common.KDTree import query [as 别名]
def knnW(data, k=2, p=2, ids=None, pct_unique=0.25):
    """
    Creates nearest neighbor weights matrix based on k nearest
    neighbors.

    Parameters
    ----------

    data       : array (n,k) or KDTree where KDtree.data is array (n,k)
                 n observations on k characteristics used to measure
                 distances between the n objects
    k          : int
                 number of nearest neighbors
    p          : float
                 Minkowski p-norm distance metric parameter:
                 1<=p<=infinity
                 2: Euclidean distance
                 1: Manhattan distance
    ids        : list
                 identifiers to attach to each observation
    pct_unique : float
                 threshold percentage of unique points in data. Below this
                 threshold tree is built on unique values only

    Returns
    -------

    w         : W instance
                Weights object with binary weights

    Examples
    --------

    >>> x,y=np.indices((5,5))
    >>> x.shape=(25,1)
    >>> y.shape=(25,1)
    >>> data=np.hstack([x,y])
    >>> wnn2=knnW(data,k=2)
    >>> wnn4=knnW(data,k=4)
    >>> set([1,5,6,2]) == set(wnn4.neighbors[0])
    True
    >>> set([0,6,10,1]) == set(wnn4.neighbors[5])
    True
    >>> set([1,5]) == set(wnn2.neighbors[0])
    True
    >>> set([0,6]) == set(wnn2.neighbors[5])
    True
    >>> "%.2f"%wnn2.pct_nonzero
    '0.08'
    >>> wnn4.pct_nonzero
    0.16
    >>> wnn3e=knnW(data,p=2,k=3)
    >>> set([1,5,6]) == set(wnn3e.neighbors[0])
    True
    >>> wnn3m=knnW(data,p=1,k=3)
    >>> a = set([1,5,2])
    >>> b = set([1,5,6])
    >>> c = set([1,5,10])
    >>> w0n = set(wnn3m.neighbors[0])
    >>> a==w0n or b==w0n or c==w0n
    True

    ids

    >>> wnn2 = knnW(data,2)
    >>> wnn2[0]
    {1: 1.0, 5: 1.0}
    >>> wnn2[1]
    {0: 1.0, 2: 1.0}

    now with 1 rather than 0 offset

    >>> wnn2 = knnW(data,2, ids = range(1,26))
    >>> wnn2[1]
    {2: 1.0, 6: 1.0}
    >>> wnn2[2]
    {1: 1.0, 3: 1.0}
    >>> 0 in wnn2.neighbors
    False

    Notes
    -----

    Ties between neighbors of equal distance are arbitrarily broken.

    See Also
    --------
    pysal.weights.W

    """

    if issubclass(type(data), scipy.spatial.KDTree):
        kd = data
        data = kd.data
        nnq = kd.query(data, k=k+1, p=p)
        info = nnq[1]
    elif type(data).__name__ == 'ndarray':
        # check if unique points are a small fraction of all points
        ind =  np.lexsort(data.T)
        u = data[np.concatenate(([True],np.any(data[ind[1:]]!=data[ind[:-1]],axis=1)))]
#.........这里部分代码省略.........
开发者ID:cheneason,项目名称:pysal,代码行数:103,代码来源:Distance.py

示例4: knnW

# 需要导入模块: from pysal.common import KDTree [as 别名]
# 或者: from pysal.common.KDTree import query [as 别名]
def knnW(data, k=2, p=2, ids=None):
    """
    Creates nearest neighbor weights matrix based on k nearest
    neighbors.

    Parameters
    ----------

    kdtree      : object
                  PySAL KDTree or ArcKDTree where KDtree.data is array (n,k)
                  n observations on k characteristics used to measure
                  distances between the n objects
    k           : int
                  number of nearest neighbors
    p           : float
                  Minkowski p-norm distance metric parameter:
                  1<=p<=infinity
                  2: Euclidean distance
                  1: Manhattan distance
                  Ignored if the KDTree is an ArcKDTree
    ids         : list
                  identifiers to attach to each observation

    Returns
    -------

    w         : W
                instance
                Weights object with binary weights

    Examples
    --------

    >>> points = [(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
    >>> kd = pysal.cg.kdtree.KDTree(np.array(points))
    >>> wnn2 = pysal.knnW(kd, 2)
    >>> [1,3] == wnn2.neighbors[0]
    True

    ids

    >>> wnn2 = knnW(kd,2)
    >>> wnn2[0]
    {1: 1.0, 3: 1.0}
    >>> wnn2[1]
    {0: 1.0, 3: 1.0}

    now with 1 rather than 0 offset

    >>> wnn2 = knnW(kd, 2, ids=range(1,7))
    >>> wnn2[1]
    {2: 1.0, 4: 1.0}
    >>> wnn2[2]
    {1: 1.0, 4: 1.0}
    >>> 0 in wnn2.neighbors
    False

    Notes
    -----

    Ties between neighbors of equal distance are arbitrarily broken.

    See Also
    --------
    pysal.weights.W

    """
    if isKDTree(data):
        kdt = data
        data = kdt.data
    else:
        kdt = KDTree(data)
    nnq = kdt.query(data, k=k+1, p=p)
    info = nnq[1]

    neighbors = {}
    for i, row in enumerate(info):
        row = row.tolist()
        if i in row:
            row.remove(i)
            focal = i
        if ids:
            row = [ ids[j] for j in row]
            focal = ids[i]
        neighbors[focal] = row
    return pysal.weights.W(neighbors,  id_order=ids)
开发者ID:denadai2,项目名称:pysal,代码行数:88,代码来源:Distance.py

示例5: Kernel

# 需要导入模块: from pysal.common import KDTree [as 别名]
# 或者: from pysal.common.KDTree import query [as 别名]
class Kernel(W):
    def __init__(self, data, bandwidth=None, fixed=True, k=2,
                 function='triangular', eps=1.0000001, ids=None,
                 diagonal=False, ncores=1):
        if issubclass(type(data), scipy.spatial.KDTree):
            self.kdt = data
            self.data = self.kdt.data
            data = self.data
        else:
            self.data = data
            self.kdt = KDTree(self.data)
        self.k = k + 1
        self.function = function.lower()
        self.fixed = fixed
        self.eps = eps
        self.ncores = ncores

        if bandwidth:
            try:
                bandwidth = np.array(bandwidth)
                bandwidth.shape = (len(bandwidth), 1)
            except:
                bandwidth = np.ones((len(data), 1), 'float') * bandwidth
            self.bandwidth = bandwidth
        else:
            self._set_bw()

        self._eval_kernel()
        neighbors, weights = self._k_to_W(ids)
        if diagonal:
            for i in neighbors:
                weights[i][neighbors[i].index(i)] = 1.0
        W.__init__(self, neighbors, weights, ids)

    def _k_to_W(self, ids=None):
        allneighbors = {}
        weights = {}
        if ids:
            ids = np.array(ids)
        else:
            ids = np.arange(len(self.data))
        for i, neighbors in enumerate(self.kernel):
            if len(self.neigh[i]) == 0:
                allneighbors[ids[i]] = []
                weights[ids[i]] = []
            else:
                allneighbors[ids[i]] = list(ids[self.neigh[i]])
                weights[ids[i]] = self.kernel[i].tolist()
        return allneighbors, weights

    def _set_bw(self):
        dmat, neigh = self.kdt.query(self.data, k=self.k)
        if self.fixed:
            # use max knn distance as bandwidth
            bandwidth = dmat.max() * self.eps
            n = len(dmat)
            self.bandwidth = np.ones((n, 1), 'float') * bandwidth
        else:
            # use local max knn distance
            self.bandwidth = dmat.max(axis=1) * self.eps
            self.bandwidth.shape = (self.bandwidth.size, 1)
            # identify knn neighbors for each point
            nnq = self.kdt.query(self.data, k=self.k)
            self.neigh = nnq[1]

    def _eval_kernel(self):
        t1 = time.time()
        # get points within bandwidth distance of each point
        kdtbq = self.kdt.query_ball_point
        kdtq = self.kdt.query
        bw = self.bandwidth
        if self.ncores > 1:
            pool = mp.Pool(processes=self.ncores, initializer=loadkd, initargs=(kdtbq,kdtq,bw))
        if not hasattr(self, 'neigh'):
            if self.ncores > 1:
                neighbors = pool.map(bqwrapper,self.data, chunksize = len(self.bandwidth) / self.ncores)
            else:
                neighbors = [kdtbq(self.data[i], r=bwi[0]) for i,
                            bwi in enumerate(self.bandwidth)]
            self.neigh = neighbors
        t2 = time.time()
        print "Ball Point Query took {} seconds.".format(t2 - t1)
        # get distances for neighbors
        bw = self.bandwidth

        #kdtq = self.kdt.query
        z = []
        t1 = time.time()
        if self.ncores > 1:
            iterable = [(i,nids, self.data[i]) for i, nids in enumerate(self.neigh)]
            z = pool.map(qwrapper, iterable)
        else:
            for i, nids in enumerate(self.neigh):
                di, ni = kdtq(self.data[i], k=len(nids))
                zi = np.array([dict(zip(ni, di))[nid] for nid in nids]) / bw[i]
                z.append(zi)
        t2 = time.time()
        print "Local query took: {} seconds".format(t2 - t1)
        zs = z
        # functions follow Anselin and Rey (2010) table 5.4
#.........这里部分代码省略.........
开发者ID:giserh,项目名称:cybergis-toolkit,代码行数:103,代码来源:kerneltest.py

示例6: Kernel

# 需要导入模块: from pysal.common import KDTree [as 别名]
# 或者: from pysal.common.KDTree import query [as 别名]

#.........这里部分代码省略.........
    >>> kq.weights
    {0: [0.3989422804014327, 0.35206533556593145, 0.3412334260702758], 1: [0.35206533556593145, 0.3989422804014327, 0.2419707487162134, 0.3412334260702758, 0.31069657591175387], 2: [0.2419707487162134, 0.3989422804014327, 0.31069657591175387], 3: [0.3412334260702758, 0.3412334260702758, 0.3989422804014327, 0.3011374490937829, 0.26575287272131043], 4: [0.31069657591175387, 0.31069657591175387, 0.3011374490937829, 0.3989422804014327, 0.35206533556593145], 5: [0.26575287272131043, 0.35206533556593145, 0.3989422804014327]}
    >>> kqd = Kernel(points, function='gaussian', diagonal=True)
    >>> kqd.weights
    {0: [1.0, 0.35206533556593145, 0.3412334260702758], 1: [0.35206533556593145, 1.0, 0.2419707487162134, 0.3412334260702758, 0.31069657591175387], 2: [0.2419707487162134, 1.0, 0.31069657591175387], 3: [0.3412334260702758, 0.3412334260702758, 1.0, 0.3011374490937829, 0.26575287272131043], 4: [0.31069657591175387, 0.31069657591175387, 0.3011374490937829, 1.0, 0.35206533556593145], 5: [0.26575287272131043, 0.35206533556593145, 1.0]}
    """

    def __init__(
        self, data, bandwidth=None, fixed=True, k=2, function="triangular", eps=1.0000001, ids=None, diagonal=False
    ):
        if issubclass(type(data), scipy.spatial.KDTree):
            self.kdt = data
            self.data = self.kdt.data
            data = self.data
        else:
            self.data = data
            self.kdt = KDTree(self.data)
        self.k = k + 1
        self.function = function.lower()
        self.fixed = fixed
        self.eps = eps
        if bandwidth:
            try:
                bandwidth = np.array(bandwidth)
                bandwidth.shape = (len(bandwidth), 1)
            except:
                bandwidth = np.ones((len(data), 1), "float") * bandwidth
            self.bandwidth = bandwidth
        else:
            self._set_bw()

        self._eval_kernel()
        neighbors, weights = self._k_to_W(ids)
        if diagonal:
            for i in neighbors:
                weights[i][neighbors[i].index(i)] = 1.0
        W.__init__(self, neighbors, weights, ids)

    def _k_to_W(self, ids=None):
        allneighbors = {}
        weights = {}
        if ids:
            ids = np.array(ids)
        else:
            ids = np.arange(len(self.data))
        for i, neighbors in enumerate(self.kernel):
            if len(self.neigh[i]) == 0:
                allneighbors[ids[i]] = []
                weights[ids[i]] = []
            else:
                allneighbors[ids[i]] = list(ids[self.neigh[i]])
                weights[ids[i]] = self.kernel[i].tolist()
        return allneighbors, weights

    def _set_bw(self):
        dmat, neigh = self.kdt.query(self.data, k=self.k)
        if self.fixed:
            # use max knn distance as bandwidth
            bandwidth = dmat.max() * self.eps
            n = len(dmat)
            self.bandwidth = np.ones((n, 1), "float") * bandwidth
        else:
            # use local max knn distance
            self.bandwidth = dmat.max(axis=1) * self.eps
            self.bandwidth.shape = (self.bandwidth.size, 1)
            # identify knn neighbors for each point
            nnq = self.kdt.query(self.data, k=self.k)
            self.neigh = nnq[1]

    def _eval_kernel(self):
        # get points within bandwidth distance of each point
        if not hasattr(self, "neigh"):
            kdtq = self.kdt.query_ball_point
            neighbors = [kdtq(self.data[i], r=bwi[0]) for i, bwi in enumerate(self.bandwidth)]
            self.neigh = neighbors
        # get distances for neighbors
        bw = self.bandwidth

        kdtq = self.kdt.query
        z = []
        for i, nids in enumerate(self.neigh):
            di, ni = kdtq(self.data[i], k=len(nids))
            zi = np.array([dict(zip(ni, di))[nid] for nid in nids]) / bw[i]
            z.append(zi)
        zs = z
        # functions follow Anselin and Rey (2010) table 5.4
        if self.function == "triangular":
            self.kernel = [1 - zi for zi in zs]
        elif self.function == "uniform":
            self.kernel = [np.ones(zi.shape) * 0.5 for zi in zs]
        elif self.function == "quadratic":
            self.kernel = [(3.0 / 4) * (1 - zi ** 2) for zi in zs]
        elif self.function == "quartic":
            self.kernel = [(15.0 / 16) * (1 - zi ** 2) ** 2 for zi in zs]
        elif self.function == "gaussian":
            c = np.pi * 2
            c = c ** (-0.5)
            self.kernel = [c * np.exp(-(zi ** 2) / 2.0) for zi in zs]
        else:
            print "Unsupported kernel function", self.function
开发者ID:andyreagan,项目名称:pysal,代码行数:104,代码来源:Distance.py


注:本文中的pysal.common.KDTree.query方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。