本文整理汇总了Python中pyqtgraph.image函数的典型用法代码示例。如果您正苦于以下问题:Python image函数的具体用法?Python image怎么用?Python image使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了image函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: reconstruct
def reconstruct(self):
self.recon.lbl.setText("Reconstruction is currently running")
self.d= tomopy.xtomo_dataset(log='debug')
self.reconelement=self.recon.combo.currentIndex()
self.d.data=self.data[self.reconelement,:,:,:]
self.d.data[self.d.data==inf]=0.01
self.d.data[np.isnan(self.d.data)]=0.01
###TEMP
if self.recon.reconvalue==0:
self.d.data = (np.exp(-0.0001*self.d.data)).astype('float32')
else:
print "transmission"
#self.d.center=128
###TEMP
self.d.center=self.p1[2]
if self.recon.method.currentIndex()==0:
self.d.dataset(self.d.data, theta=self.theta*np.pi/180)
#self.d.optimize_center()
self.d.mlem()
elif self.recon.method.currentIndex()==1:
self.d.dataset(self.d.data, theta=self.theta)
#self.d.optimize_center()
self.d.gridrec()
elif self.recon.method.currentIndex()==2:
self.d.dataset(self.d.data, theta=self.theta*np.pi/180)
#self.d.optimize_center()
self.d.art()
print self.d.center
pg.image(self.d.data_recon)
self.recon.lbl.setText("Done")
self.recon.save.setHidden(False)
示例2: Image_Background
def Image_Background(self):
self.background=[]
background = self.imageData[self.times<1]
pg.image(np.mean(background[1:],axis=0), title='average background ')
self.background = np.mean(background,axis=0)
return
示例3: simplePlot
def simplePlot():
data = np.random.normal(size=1000)
pg.plot(data, title="Simplest possible plotting example")
data = np.random.normal(size=(500,500))
pg.image(data, title="Simplest possible image example")
pg.QtGui.QApplication.exec_()
示例4: test_mask_data
def test_mask_data():
# create Gaussian image:
img_size = 500
x = np.arange(img_size)
y = np.arange(img_size)
X, Y = np.meshgrid(x, y)
center_x = img_size / 2
center_y = img_size / 2
width = 30000.0
intensity = 5000.0
img_data = intensity * \
np.exp(-((X - center_x) ** 2 + (Y - center_y) ** 2) / width)
mask_data = MaskData(img_data.shape)
# test the undo and redo commands
mask_data.mask_above_threshold(img_data, 4000)
mask_data.mask_below_threshold(img_data, 230)
mask_data.undo()
mask_data.undo()
mask_data.redo()
mask_data.redo()
mask_data.undo()
mask_data.mask_rect(200, 400, 400, 100)
mask_data.mask_QGraphicsRectItem(
QtGui.QGraphicsRectItem(100, 10, 100, 100))
mask_data.undo()
mask_data.mask_polygon(
np.array([0, 100, 150, 100, 0]), np.array([0, 0, 50, 100, 100]))
mask_data.mask_QGraphicsPolygonItem(
QtGui.QGraphicsEllipseItem(350, 350, 20, 20))
# performing the plot
pg.image(mask_data.get_img())
示例5: paramChanged
def paramChanged(param, changes):
for param, changeType, newVal in changes:
print("Handling name: {}, changeType: {}, newVal: {}".format(param.name, changeType, newVal))
name=param.name()
if changeType=='activated':
if name=="Capture Once":
capture()
if name=="Least-squares Fit":
crp.updateFit()
if name=="Record Background":
main.setBG()
if name=="Reset Crop":
main.resetCrop()
if name=="Show BG":
pg.image(main.bg)
elif name=='Acquire Continuous':
global bCaptureContinuous
bCaptureContinuous=newVal
elif name=='full fit':
crp.bDoFullFit=newVal
elif name=='Subtract BG':
main.bSubtractBG=newVal
elif name=='Update Projections':
main.bUpdateProjections=newVal
elif name=='Auto fit':
crp.bAutoFit=newVal
elif name=='Averages':
cam.Naves=newVal
else:
print("Somehow missed handling '{}'".format(name))
示例6: Image_Background
def Image_Background(self):
self.background=[]
background = self.imageData[:50]
print 'shape of background:', np.shape(background)
pg.image(np.mean(background[10:49],axis=0), title='average background ')
self.background = np.mean(background,axis=0)
return
示例7: updateAvgStdImage
def updateAvgStdImage(self):
""" update the reference image types and then make sure display agrees.
"""
self.aveImage = np.mean(self.imageData, axis=0)
self.stdImage = np.std(self.imageData, axis=0)
pg.image(self.aveImage, title='mean after registration')
pg.image(self.stdImage, title='std after registration')
return
示例8: simplePlot
def simplePlot():
data = np.random.normal(size=1000)
pg.plot(data, title="Simplest possible plotting example")
data = np.random.normal(size=(500,500))
pg.image(data, title="Simplest possible image example")
## Start Qt event loop unless running in interactive mode or using pyside.
if __name__ == '__main__':
import sys
if sys.flags.interactive != 1 or not hasattr(QtCore, 'PYQT_VERSION'):
pg.QtGui.QApplication.exec_()
示例9: load_file
def load_file(self, repnum):
global options
global basepath
if repnum < 10:
upf = basepath + options.upfile + "/00" + str(repnum) + "/Camera/frames.ma"
else:
upf = basepath + options.upfile + "/0" + str(repnum) + "/Camera/frames.ma"
# upf = basepath + options.upfile + '/Camera/frames.ma'
im = []
self.imageData = []
print "loading data from ", upf
try:
im = MetaArray(file=upf, subset=(slice(0, 2), slice(64, 128), slice(64, 128)))
except:
print "Error loading upfile: %s\n" % upf
return
print "data loaded"
self.times = im.axisValues("Time").astype("float32")
self.imageData = im.view(np.ndarray).astype("float32")
pg.image(self.imageData, title=str(repnum))
# self.ProcessImage()
print "imageData shape:", np.shape(self.imageData)
# self.imageData = self.imageData[np.where(self.times>1)]
back = self.imageData[np.where(np.logical_and(self.times > 2, self.times < 3))]
print "size of back", np.shape(back)
self.background = np.mean(back[5:], axis=0)
# self.times= self.times-1
# interval1=self.imageData[np.where(np.logical_and(self.times>=1, self.times<=1.25))]
# print 'interval1 shape:', np.shape(interval1)
# interval2=self.imageData[np.where(np.logical_and(self.times>=2, self.times<=2.25))]
# print 'interval2 shape:', np.shape(interval2)
# interval3=self.imageData[np.where(np.logical_and(self.times>=3, self.times<=3.25))]
# print 'interval3 shape:', np.shape(interval3)
# interval4=self.imageData[np.where(np.logical_and(self.times>=4, self.times<=4.25))]
# print 'interval4 shape:', np.shape(interval4)
# interval5=self.imageData[np.where(np.logical_and(self.times>=5, self.times<=5.25))]
# print 'interval5 shape:', np.shape(interval5)
# back=self.imageData[np.where(np.logical_and(self.times>0, self.times<1))]
# background=np.mean(back,axis=0)
# meanimg=np.mean(self.imageData, axis=0)
# pg.image(meanimg, title='mean image')
# self.imageData = ((interval1+interval2+interval3+interval4+interval5)/5-background)/background
print "imageData shape:", np.shape(self.imageData)
# pg.image(background, title='background')
# self.imageData=scipy.ndimage.gaussian_filter(self.imageData, sigma=[1,3,3], order=0,mode='reflect',truncate=4.0)
return
示例10: test_nan_image
def test_nan_image():
img = np.ones((10,10))
img[0,0] = np.nan
v = pg.image(img)
v.imageItem.getHistogram()
app.processEvents()
v.window().close()
示例11: getErr
def getErr(self, p=None, bShow=False):
if p is None:
p=self.getP()
guess=self.getFramePar(p) #figure(2)
#guess=gauss(X, [sqrt(p[0]), p[1], p[3]])*gauss(Y, [sqrt(p[0]), p[2], p[3]])
err = ((guess-self.targetFrame)**2).sum()
if bShow:
pg.image(guess, title='guess')
pg.image(self.targetFrame, title='frame')
#imshow(guess)
#draw()
#print("Params: {0}".format(p))
if err==0:
err=1e-12
err=np.log(err)
print("err, height: {}, {}".format(err, p[0]))
return err;
示例12: test_dividebyzero
def test_dividebyzero():
import pyqtgraph as pg
im = pg.image(pg.np.random.normal(size=(100,100)))
im.imageItem.setAutoDownsample(True)
im.view.setRange(xRange=[-5+25, 5e+25],yRange=[-5e+25, 5e+25])
app.processEvents()
QtTest.QTest.qWait(1000)
# must manually call im.imageItem.render here or the exception
# will only exist on the Qt event loop
im.imageItem.render()
示例13: _CompareGoodnessCorrelation
def _CompareGoodnessCorrelation(self):
locs = self._postProcessedLocs[:]
distXYs = np.array([loc.distXY for loc in locs])
prop = {}
prop["lsError"] = np.array([loc.lsError for loc in locs])
prop["photons"] = np.array([loc.photons for loc in locs]).ravel()
prop["amp"] = np.array([loc.amp for loc in locs]).ravel()
prop["minFitDistXY"] = np.array([loc.minFitDistXY for loc in locs]).ravel()
prop["sigmaX"] = np.array([loc.sigmaX for loc in locs]).ravel()
prop["sigmaY"] = np.array([loc.sigmaY for loc in locs]).ravel()
prop["offset"] = np.array([loc.offset for loc in locs]).ravel()
prop["distXY"] = np.array([loc.distXY for loc in locs]).ravel()
prop["fitStdAmp"] = np.array([loc.fitStdAmp for loc in locs]).ravel()
prop["fitStdX0"] = np.array([loc.fitStdX0 for loc in locs]).ravel()
prop["fitStdY0"] = np.array([loc.fitStdY0 for loc in locs]).ravel()
prop["fitStdZ0"] = np.array([loc.fitStdZ0 for loc in locs]).ravel()
prop["fitStdOffset"] = np.array([loc.fitStdOffset for loc in locs]).ravel()
prop["pixels"] = np.array([float(loc.nrOfPixels) for loc in locs]).ravel()
rValues = []
for k, v in prop.iteritems():
slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(distXYs, v)
# print k, slope, intercept, "R2", r_value ** 2.0
func = lambda d: slope * d + intercept
rValues.append((k, slope, r_value ** 2.0))
plt = pg.PlotItem()
imv = pg.image(view = plt)
plt.plot(distXYs, v, pen = None, symbol = "x", symbolSize = 2.0)
plt.plot(distXYs, func(distXYs), pen = "r")
plt.addLine(y = np.mean(v))
plt.addLine(y = np.mean(v) + np.std(v))
plt.addLine(y = np.mean(v) - np.std(v))
plt.setLabels(bottom = ("distXY", "m"), left = (k))
hist, xedges, yedges = np.histogram2d(distXYs, v, bins = 100)
xStep, yStep = xedges[1] - xedges[0], yedges[1] - yedges[0]
transform = QtGui.QTransform()
transform.translate(xedges[0], yedges[0])
transform.scale(xStep, yStep)
imv.view.invertY(False)
imv.view.setAspectLocked(False)
imv.setImage(hist, transform = transform)
# plt.setRange(xRange = [0.0, 20e-9])
print
print "Sorted R2"
rValues.sort(key = lambda x:-x[-1])
print "\n".join(["%s: slope %f, R2 %.3f" % (k, s, r2) for k, s, r2 in rValues])
示例14: mkData
def mkData():
with pg.BusyCursor():
global data, cache, ui
frames = ui.framesSpin.value()
width = ui.widthSpin.value()
height = ui.heightSpin.value()
dtype = (ui.dtypeCombo.currentText(), ui.rgbCheck.isChecked(), frames, width, height)
if dtype not in cache:
if dtype[0] == 'uint8':
dt = np.uint8
loc = 128
scale = 64
mx = 255
elif dtype[0] == 'uint16':
dt = np.uint16
loc = 4096
scale = 1024
mx = 2**16
elif dtype[0] == 'float':
dt = np.float
loc = 1.0
scale = 0.1
if ui.rgbCheck.isChecked():
data = np.random.normal(size=(frames,width,height,3), loc=loc, scale=scale)
data = pg.gaussianFilter(data, (0, 6, 6, 0))
else:
data = np.random.normal(size=(frames,width,height), loc=loc, scale=scale)
data = pg.gaussianFilter(data, (0, 6, 6))
pg.image(data)
if dtype[0] != 'float':
data = np.clip(data, 0, mx)
data = data.astype(dt)
cache = {dtype: data} # clear to save memory (but keep one to prevent unnecessary regeneration)
data = cache[dtype]
updateLUT()
updateSize()
示例15: badpix_from_darkcal
def badpix_from_darkcal(filename="", qtmainwin=None):
# Use dialog_pickfile() if no filename is provided
if filename is "":
filename = cfel_file.dialog_pickfile(filter='*.h5', qtmainwin=qtmainwin)
if filename is "":
return
# Determine what type of detector we are using
# CsPad only for now - make fancy later (or use a selection box)
detector = 'cspad'
# Call routine for appropriate detector system
if detector == 'cspad':
mask = cfel_cspad.badpix_from_darkcal(filename)
# Display mask (pyqtgraph.show)
temp = mask.astype(int)
pyqtgraph.image(temp, levels=(0,1))
#pg.imageView.ui.menuBtn.hide()
#pg.imageView.ui.roiBtn.hide()
# Save mask
outfile = cfel_file.dialog_pickfile(write=True, path='../calib/mask', filter='*.h5', qtmainwin=qtmainwin)
if outfile is not '':
print("Saving mask: ", outfile)
cfel_file.write_h5(mask, outfile, field='data/data')