本文整理汇总了Python中pyon.public.IonObject.configuration方法的典型用法代码示例。如果您正苦于以下问题:Python IonObject.configuration方法的具体用法?Python IonObject.configuration怎么用?Python IonObject.configuration使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pyon.public.IonObject
的用法示例。
在下文中一共展示了IonObject.configuration方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_tuple_in_dict
# 需要导入模块: from pyon.public import IonObject [as 别名]
# 或者: from pyon.public.IonObject import configuration [as 别名]
def test_tuple_in_dict(self):
# create a resource with a tuple saved in a dict
transform_obj = IonObject(RT.Transform)
transform_obj.configuration = {}
transform_obj.configuration["tuple"] = ('STRING',)
transform_id, _ = self.resource_registry_service.create(transform_obj)
# read the resource back
returned_transform_obj = self.resource_registry_service.read(transform_id)
self.assertEqual(transform_obj.configuration["tuple"], returned_transform_obj.configuration["tuple"])
示例2: test_multiple_visualization_queue
# 需要导入模块: from pyon.public import IonObject [as 别名]
# 或者: from pyon.public.IonObject import configuration [as 别名]
def test_multiple_visualization_queue(self):
# set up a workflow with the salinity transform and the doubler. We will direct the original stream and the doubled stream to queues
# and test to make sure the subscription to the queues is working correctly
assertions = self.assertTrue
# Build the workflow definition
workflow_def_obj = IonObject(RT.WorkflowDefinition, name='Viz_Test_Workflow',description='A workflow to test collection of multiple data products in queues')
workflow_data_product_name = 'TEST-Workflow_Output_Product' #Set a specific output product name
#-------------------------------------------------------------------------------------------------------------------------
#Add a transformation process definition for salinity
#-------------------------------------------------------------------------------------------------------------------------
ctd_L2_salinity_dprocdef_id = self.create_salinity_data_process_definition()
workflow_step_obj = IonObject('DataProcessWorkflowStep', data_process_definition_id=ctd_L2_salinity_dprocdef_id, persist_process_output_data=False) #Don't persist the intermediate data product
configuration = {'stream_name' : 'salinity'}
workflow_step_obj.configuration = configuration
workflow_def_obj.workflow_steps.append(workflow_step_obj)
#Create it in the resource registry
workflow_def_id = self.workflowclient.create_workflow_definition(workflow_def_obj)
aids = self.rrclient.find_associations(workflow_def_id, PRED.hasDataProcessDefinition)
assertions(len(aids) == 1 )
#The list of data product streams to monitor
data_product_stream_ids = list()
#Create the input data product
ctd_stream_id, ctd_parsed_data_product_id = self.create_ctd_input_stream_and_data_product()
data_product_stream_ids.append(ctd_stream_id)
#Create and start the workflow
workflow_id, workflow_product_id = self.workflowclient.create_data_process_workflow(workflow_def_id, ctd_parsed_data_product_id, timeout=30)
workflow_output_ids,_ = self.rrclient.find_subjects(RT.Workflow, PRED.hasOutputProduct, workflow_product_id, True)
assertions(len(workflow_output_ids) == 1 )
#Walk the associations to find the appropriate output data streams to validate the messages
workflow_dp_ids,_ = self.rrclient.find_objects(workflow_id, PRED.hasDataProduct, RT.DataProduct, True)
assertions(len(workflow_dp_ids) == 1 )
for dp_id in workflow_dp_ids:
stream_ids, _ = self.rrclient.find_objects(dp_id, PRED.hasStream, None, True)
assertions(len(stream_ids) == 1 )
data_product_stream_ids.append(stream_ids[0])
# Now for each of the data_product_stream_ids create a queue and pipe their data to the queue
user_queue_name1 = USER_VISUALIZATION_QUEUE + '1'
user_queue_name2 = USER_VISUALIZATION_QUEUE + '2'
# use idempotency to create queues
xq1 = self.container.ex_manager.create_xn_queue(user_queue_name1)
self.addCleanup(xq1.delete)
xq2 = self.container.ex_manager.create_xn_queue(user_queue_name2)
self.addCleanup(xq2.delete)
xq1.purge()
xq2.purge()
# the create_subscription call takes a list of stream_ids so create temp ones
dp_stream_id1 = list()
dp_stream_id1.append(data_product_stream_ids[0])
dp_stream_id2 = list()
dp_stream_id2.append(data_product_stream_ids[1])
salinity_subscription_id1 = self.pubsubclient.create_subscription( stream_ids=dp_stream_id1,
exchange_name = user_queue_name1, name = "user visualization queue1")
salinity_subscription_id2 = self.pubsubclient.create_subscription( stream_ids=dp_stream_id2,
exchange_name = user_queue_name2, name = "user visualization queue2")
# Create subscribers for the output of the queue
subscriber1 = Subscriber(from_name=xq1)
subscriber1.initialize()
subscriber2 = Subscriber(from_name=xq2)
subscriber2.initialize()
# after the queue has been created it is safe to activate the subscription
self.pubsubclient.activate_subscription(subscription_id=salinity_subscription_id1)
self.pubsubclient.activate_subscription(subscription_id=salinity_subscription_id2)
# Start input stream and wait for some time
ctd_sim_pid = self.start_simple_input_stream_process(ctd_stream_id)
gevent.sleep(5.0) # Send some messages - don't care how many
msg_count,_ = xq1.get_stats()
log.info('Messages in user queue 1: %s ' % msg_count)
msg_count,_ = xq2.get_stats()
log.info('Messages in user queue 2: %s ' % msg_count)
msgs1 = subscriber1.get_all_msgs(timeout=2)
msgs2 = subscriber2.get_all_msgs(timeout=2)
for x in range(min(len(msgs1), len(msgs2))):
msgs1[x].ack()
msgs2[x].ack()
#.........这里部分代码省略.........