本文整理汇总了Python中pyomo.environ.ConcreteModel.v方法的典型用法代码示例。如果您正苦于以下问题:Python ConcreteModel.v方法的具体用法?Python ConcreteModel.v怎么用?Python ConcreteModel.v使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pyomo.environ.ConcreteModel
的用法示例。
在下文中一共展示了ConcreteModel.v方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_reclassification
# 需要导入模块: from pyomo.environ import ConcreteModel [as 别名]
# 或者: from pyomo.environ.ConcreteModel import v [as 别名]
def test_reclassification(self):
m = ConcreteModel()
m.t = ContinuousSet(bounds=(0, 1))
m.x = ContinuousSet(bounds=(5, 10))
m.s = Set(initialize=[1, 2, 3])
m.v = Var(m.t)
m.v2 = Var(m.s, m.t)
m.v3 = Var(m.x, m.t)
m.dv = DerivativeVar(m.v)
m.dv2 = DerivativeVar(m.v2, wrt=(m.t, m.t))
m.dv3 = DerivativeVar(m.v3, wrt=m.x)
TransformationFactory('dae.finite_difference').apply_to(m, wrt=m.t)
self.assertTrue(m.dv.type() is Var)
self.assertTrue(m.dv2.type() is Var)
self.assertTrue(m.dv.is_fully_discretized())
self.assertTrue(m.dv2.is_fully_discretized())
self.assertTrue(m.dv3.type() is DerivativeVar)
self.assertFalse(m.dv3.is_fully_discretized())
TransformationFactory('dae.collocation').apply_to(m, wrt=m.x)
self.assertTrue(m.dv3.type() is Var)
self.assertTrue(m.dv3.is_fully_discretized())
示例2: test_bilinear_in_disjuncts
# 需要导入模块: from pyomo.environ import ConcreteModel [as 别名]
# 或者: from pyomo.environ.ConcreteModel import v [as 别名]
def test_bilinear_in_disjuncts(self):
m = ConcreteModel()
m.x = Var([0], bounds=(-3, 8))
m.y = Var(RangeSet(4), domain=Binary)
m.z = Var(domain=Integers, bounds=(-1, 2))
m.constr = Constraint(
expr=m.x[0] == m.y[1] + 2 * m.y[2] + m.y[3] + 2 * m.y[4] + m.z)
m.logical = ConstraintList()
m.logical.add(expr=m.y[1] + m.y[2] == 1)
m.logical.add(expr=m.y[3] + m.y[4] == 1)
m.logical.add(expr=m.y[2] + m.y[4] <= 1)
m.v = Var([1, 2])
m.v[1].setlb(-2)
m.v[1].setub(7)
m.v[2].setlb(-4)
m.v[2].setub(5)
m.bilinear = Constraint(
expr=(m.x[0] - 3) * (m.v[1] + 2) - (m.v[2] + 4) * m.v[1] +
exp(m.v[1] ** 2) * m.x[0] <= m.v[2])
m.disjctn = Disjunction(expr=[
[m.x[0] * m.v[1] <= 4],
[m.x[0] * m.v[2] >= 6]
])
TransformationFactory('contrib.induced_linearity').apply_to(m)
self.assertEqual(
m.disjctn.disjuncts[0].constraint[1].body.polynomial_degree(), 1)
self.assertEqual(
m.disjctn.disjuncts[1].constraint[1].body.polynomial_degree(), 1)
示例3: test_invalid_derivative
# 需要导入模块: from pyomo.environ import ConcreteModel [as 别名]
# 或者: from pyomo.environ.ConcreteModel import v [as 别名]
def test_invalid_derivative(self):
m = ConcreteModel()
m.t = ContinuousSet(bounds=(0, 10))
m.v = Var(m.t)
m.dv = DerivativeVar(m.v, wrt=(m.t, m.t, m.t))
with self.assertRaises(DAE_Error):
TransformationFactory('dae.finite_difference').apply_to(m)
示例4: test_fixed_var_out_of_bounds_ub
# 需要导入模块: from pyomo.environ import ConcreteModel [as 别名]
# 或者: from pyomo.environ.ConcreteModel import v [as 别名]
def test_fixed_var_out_of_bounds_ub(self):
m = ConcreteModel()
m.s = RangeSet(2)
m.v = Var(m.s, bounds=(0, 5))
m.c = ConstraintList()
m.c.add(expr=m.v[1] == m.v[2])
m.c.add(expr=m.v[1] == 6)
with self.assertRaises(ValueError):
TransformationFactory('contrib.aggregate_vars').apply_to(m)
示例5: test_initialized_continuous_set
# 需要导入模块: from pyomo.environ import ConcreteModel [as 别名]
# 或者: from pyomo.environ.ConcreteModel import v [as 别名]
def test_initialized_continuous_set(self):
m = ConcreteModel()
m.t = ContinuousSet(initialize=[0, 1, 2, 3, 4])
m.v = Var(m.t)
m.dv = DerivativeVar(m.v)
log_out = StringIO()
with LoggingIntercept(log_out, 'pyomo.dae'):
TransformationFactory('dae.finite_difference').apply_to(m, nfe=2)
self.assertIn('More finite elements', log_out.getvalue())
示例6: test_reclassification_collocation
# 需要导入模块: from pyomo.environ import ConcreteModel [as 别名]
# 或者: from pyomo.environ.ConcreteModel import v [as 别名]
def test_reclassification_collocation(self):
m = ConcreteModel()
m.t = ContinuousSet(bounds=(0, 1))
m.x = ContinuousSet(bounds=(5, 10))
m.s = Set(initialize=[1, 2, 3])
m.v = Var(m.t)
m.v2 = Var(m.s, m.t)
m.v3 = Var(m.t, m.x)
def _int1(m, t):
return m.v[t]
m.int1 = Integral(m.t, rule=_int1)
def _int2(m, s, t):
return m.v2[s, t]
m.int2 = Integral(m.s, m.t, wrt=m.t, rule=_int2)
def _int3(m, t, x):
return m.v3[t, x]
m.int3 = Integral(m.t, m.x, wrt=m.t, rule=_int3)
def _int4(m, x):
return m.int3[x]
m.int4 = Integral(m.x, wrt=m.x, rule=_int4)
self.assertFalse(m.int1.is_fully_discretized())
self.assertFalse(m.int2.is_fully_discretized())
self.assertFalse(m.int3.is_fully_discretized())
self.assertFalse(m.int4.is_fully_discretized())
TransformationFactory('dae.collocation').apply_to(m, wrt=m.t)
self.assertTrue(m.int1.is_fully_discretized())
self.assertTrue(m.int2.is_fully_discretized())
self.assertFalse(m.int3.is_fully_discretized())
self.assertFalse(m.int4.is_fully_discretized())
self.assertTrue(m.int1.type() is Integral)
self.assertTrue(m.int2.type() is Integral)
self.assertTrue(m.int3.type() is Integral)
self.assertTrue(m.int4.type() is Integral)
TransformationFactory('dae.collocation').apply_to(m, wrt=m.x)
self.assertTrue(m.int3.is_fully_discretized())
self.assertTrue(m.int4.is_fully_discretized())
self.assertTrue(m.int1.type() is Expression)
self.assertTrue(m.int2.type() is Expression)
self.assertTrue(m.int3.type() is Expression)
self.assertTrue(m.int4.type() is Expression)
示例7: test_disc_second_order_1cp
# 需要导入模块: from pyomo.environ import ConcreteModel [as 别名]
# 或者: from pyomo.environ.ConcreteModel import v [as 别名]
def test_disc_second_order_1cp(self):
m = ConcreteModel()
m.t = ContinuousSet(bounds=(0,1))
m.t2 = ContinuousSet(bounds=(0,10))
m.v = Var(m.t, m.t2)
m.dv = DerivativeVar(m.v, wrt=(m.t, m.t2))
TransformationFactory('dae.collocation').apply_to(m, nfe=2, ncp=1)
self.assertTrue(hasattr(m, 'dv_disc_eq'))
self.assertTrue(len(m.dv_disc_eq) == 4)
self.assertTrue(len(m.v) == 9)
示例8: test_invalid
# 需要导入模块: from pyomo.environ import ConcreteModel [as 别名]
# 或者: from pyomo.environ.ConcreteModel import v [as 别名]
def test_invalid(self):
m = ConcreteModel()
m.t = ContinuousSet(bounds=(0, 1))
m.x = ContinuousSet(bounds=(5, 10))
m.s = Set(initialize=[1, 2, 3])
m.v = Var(m.t)
m.v2 = Var(m.s, m.t)
m.v3 = Var(m.x, m.t)
m.y = Var()
# Not passing a Var as the first positional argument
with self.assertRaises(DAE_Error):
m.ds = DerivativeVar(m.s)
# Specifying both option aliases
with self.assertRaises(TypeError):
m.dv = DerivativeVar(m.v, wrt=m.t, withrespectto=m.t)
# Passing in Var not indexed by a ContinuousSet
with self.assertRaises(DAE_Error):
m.dy = DerivativeVar(m.y)
# Not specifying 'wrt' when Var indexed by multiple ContinuousSets
with self.assertRaises(DAE_Error):
m.dv3 = DerivativeVar(m.v3)
# 'wrt' is not a ContinuousSet
with self.assertRaises(DAE_Error):
m.dv2 = DerivativeVar(m.v2, wrt=m.s)
with self.assertRaises(DAE_Error):
m.dv2 = DerivativeVar(m.v2, wrt=(m.t, m.s))
# Specified ContinuousSet does not index the Var
with self.assertRaises(DAE_Error):
m.dv = DerivativeVar(m.v, wrt=m.x)
with self.assertRaises(DAE_Error):
m.dv2 = DerivativeVar(m.v2, wrt=[m.t, m.x])
# Declaring the same derivative twice
m.dvdt = DerivativeVar(m.v)
with self.assertRaises(DAE_Error):
m.dvdt2 = DerivativeVar(m.v)
m.dv2dt = DerivativeVar(m.v2, wrt=m.t)
with self.assertRaises(DAE_Error):
m.dv2dt2 = DerivativeVar(m.v2, wrt=m.t)
m.dv3 = DerivativeVar(m.v3, wrt=(m.x, m.x))
with self.assertRaises(DAE_Error):
m.dv4 = DerivativeVar(m.v3, wrt=(m.x, m.x))
示例9: test_induced_linear_in_disjunct
# 需要导入模块: from pyomo.environ import ConcreteModel [as 别名]
# 或者: from pyomo.environ.ConcreteModel import v [as 别名]
def test_induced_linear_in_disjunct(self):
m = ConcreteModel()
m.x = Var([0], bounds=(-3, 8))
m.y = Var(RangeSet(2), domain=Binary)
m.logical = ConstraintList()
m.logical.add(expr=m.y[1] + m.y[2] == 1)
m.v = Var([1])
m.v[1].setlb(-2)
m.v[1].setub(7)
m.bilinear_outside = Constraint(
expr=m.x[0] * m.v[1] >= 2)
m.disjctn = Disjunction(expr=[
[m.x[0] * m.v[1] == 3,
2 * m.x[0] == m.y[1] + m.y[2]],
[m.x[0] * m.v[1] == 4]
])
TransformationFactory('contrib.induced_linearity').apply_to(m)
self.assertEqual(
m.disjctn.disjuncts[0].constraint[1].body.polynomial_degree(), 1)
self.assertEqual(
m.bilinear_outside.body.polynomial_degree(), 2)
self.assertEqual(
m.disjctn.disjuncts[1].constraint[1].body.polynomial_degree(), 2)
示例10: test_valid
# 需要导入模块: from pyomo.environ import ConcreteModel [as 别名]
# 或者: from pyomo.environ.ConcreteModel import v [as 别名]
def test_valid(self):
m = ConcreteModel()
m.t = ContinuousSet(bounds=(0, 1))
m.x = ContinuousSet(bounds=(5, 10))
m.s = Set()
m.v = Var(m.t)
m.dv = DerivativeVar(m.v)
m.dv2 = DerivativeVar(m.v, wrt=(m.t, m.t))
self.assertTrue(isinstance(m.dv, Var))
self.assertTrue(isinstance(m.dv, DerivativeVar))
self.assertTrue(m.dv._wrt[0] is m.t)
self.assertTrue(m.dv._sVar is m.v)
self.assertTrue(m.v._derivative[('t',)]() is m.dv)
self.assertTrue(m.dv.type() is DerivativeVar)
self.assertTrue(m.dv._index is m.t)
self.assertTrue(m.dv2._wrt[0] is m.t)
self.assertTrue(m.dv2._wrt[1] is m.t)
self.assertTrue(m.v._derivative[('t', 't')]() is m.dv2)
self.assertTrue(m.dv.get_state_var() is m.v)
self.assertTrue(m.dv2.get_state_var() is m.v)
del m.dv
del m.dv2
del m.v
m.v = Var(m.s, m.t)
m.dv = DerivativeVar(m.v)
m.dv2 = DerivativeVar(m.v, wrt=(m.t, m.t))
self.assertTrue(isinstance(m.dv, Var))
self.assertTrue(isinstance(m.dv, DerivativeVar))
self.assertTrue(m.dv._wrt[0] is m.t)
self.assertTrue(m.dv._sVar is m.v)
self.assertTrue(m.v._derivative[('t',)]() is m.dv)
self.assertTrue(m.dv.type() is DerivativeVar)
self.assertTrue(m.t in m.dv._implicit_subsets)
self.assertTrue(m.s in m.dv._implicit_subsets)
self.assertTrue(m.dv2._wrt[0] is m.t)
self.assertTrue(m.dv2._wrt[1] is m.t)
self.assertTrue(m.v._derivative[('t', 't')]() is m.dv2)
del m.dv
del m.dv2
del m.v
del m.v_index
del m.dv_index
del m.dv2_index
m.v = Var(m.x, m.t)
m.dv = DerivativeVar(m.v, wrt=m.x)
m.dv2 = DerivativeVar(m.v, wrt=m.t)
m.dv3 = DerivativeVar(m.v, wrt=(m.t, m.x))
m.dv4 = DerivativeVar(m.v, wrt=[m.t, m.t])
self.assertTrue(isinstance(m.dv, Var))
self.assertTrue(isinstance(m.dv, DerivativeVar))
self.assertTrue(m.dv._wrt[0] is m.x)
self.assertTrue(m.dv._sVar is m.v)
self.assertTrue(m.v._derivative[('x',)]() is m.dv)
self.assertTrue(m.v._derivative[('t',)]() is m.dv2)
self.assertTrue(m.v._derivative[('t', 'x')]() is m.dv3)
self.assertTrue(m.v._derivative[('t', 't')]() is m.dv4)
self.assertTrue(m.dv.type() is DerivativeVar)
self.assertTrue(m.x in m.dv._implicit_subsets)
self.assertTrue(m.t in m.dv._implicit_subsets)
self.assertTrue(m.dv3._wrt[0] is m.t)
self.assertTrue(m.dv3._wrt[1] is m.x)
self.assertTrue(m.dv4._wrt[0] is m.t)
self.assertTrue(m.dv4._wrt[1] is m.t)
示例11: test_invalid
# 需要导入模块: from pyomo.environ import ConcreteModel [as 别名]
# 或者: from pyomo.environ.ConcreteModel import v [as 别名]
def test_invalid(self):
m = ConcreteModel()
m.t = ContinuousSet(bounds=(0, 1))
m.x = ContinuousSet(bounds=(5, 10))
m.s = Set(initialize=[1, 2, 3])
m.v = Var(m.t)
m.v2 = Var(m.s, m.t)
m.v3 = Var(m.x, m.t)
def _int(m, t):
return m.v[t]
def _int2(m, x, t):
return m.v3[x, t]
def _int3(m, s, t):
return m.v2[s,t]
# Integrals must be indexed by a ContinuousSet
with self.assertRaises(ValueError):
m.int = Integral(rule=_int)
# Specifying multiple aliases of same option
with self.assertRaises(TypeError):
m.int = Integral(m.t, wrt=m.t, withrespectto=m.t, rule=_int)
# No ContinuousSet specified
with self.assertRaises(ValueError):
m.int2 = Integral(m.x, m.t, rule= _int2)
# 'wrt' is not a ContinuousSet
with self.assertRaises(ValueError):
m.int = Integral(m.s, m.t, wrt=m.s, rule=_int2)
# 'wrt' is not in argument list
with self.assertRaises(ValueError):
m.int = Integral(m.t, wrt=m.x, rule=_int)
# 'bounds' not supported
with self.assertRaises(DAE_Error):
m.int = Integral(m.t, wrt=m.t, rule=_int, bounds=(0,0.5))
# No rule specified
with self.assertRaises(ValueError):
m.int = Integral(m.t, wrt=m.t)
# test DerivativeVar reclassification after discretization
def test_reclassification_finite_difference(self):
m = ConcreteModel()
m.t = ContinuousSet(bounds=(0, 1))
m.x = ContinuousSet(bounds=(5, 10))
m.s = Set(initialize=[1, 2, 3])
m.v = Var(m.t)
m.v2 = Var(m.s, m.t)
m.v3 = Var(m.t, m.x)
def _int1(m, t):
return m.v[t]
m.int1 = Integral(m.t, rule=_int1)
def _int2(m, s, t):
return m.v2[s, t]
m.int2 = Integral(m.s, m.t, wrt=m.t, rule=_int2)
def _int3(m, t, x):
return m.v3[t, x]
m.int3 = Integral(m.t, m.x, wrt=m.t, rule=_int3)
def _int4(m, x):
return m.int3[x]
m.int4 = Integral(m.x, wrt=m.x, rule=_int4)
self.assertFalse(m.int1.is_fully_discretized())
self.assertFalse(m.int2.is_fully_discretized())
self.assertFalse(m.int3.is_fully_discretized())
self.assertFalse(m.int4.is_fully_discretized())
TransformationFactory('dae.finite_difference').apply_to(m, wrt=m.t)
self.assertTrue(m.int1.is_fully_discretized())
self.assertTrue(m.int2.is_fully_discretized())
self.assertFalse(m.int3.is_fully_discretized())
self.assertFalse(m.int4.is_fully_discretized())
self.assertTrue(m.int1.type() is Integral)
self.assertTrue(m.int2.type() is Integral)
self.assertTrue(m.int3.type() is Integral)
self.assertTrue(m.int4.type() is Integral)
TransformationFactory('dae.finite_difference').apply_to(m, wrt=m.x)
self.assertTrue(m.int3.is_fully_discretized())
self.assertTrue(m.int4.is_fully_discretized())
self.assertTrue(m.int1.type() is Expression)
#.........这里部分代码省略.........
示例12: test_valid
# 需要导入模块: from pyomo.environ import ConcreteModel [as 别名]
# 或者: from pyomo.environ.ConcreteModel import v [as 别名]
def test_valid(self):
m = ConcreteModel()
m.t = ContinuousSet(bounds=(0, 1))
m.x = ContinuousSet(bounds=(5, 10))
m.s = Set(initialize=[1, 2, 3])
m.v = Var(m.t)
m.v2 = Var(m.s, m.t)
m.v3 = Var(m.t, m.x)
def _int1(m, t):
return m.v[t]
m.int1 = Integral(m.t, rule=_int1)
def _int2(m, s, t):
return m.v2[s, t]
m.int2 = Integral(m.s, m.t, wrt=m.t, rule=_int2)
def _int3(m, t, x):
return m.v3[t, x]
m.int3 = Integral(m.t, m.x, wrt=m.t, rule=_int3)
def _int4(m, x):
return m.int3[x]
m.int4 = Integral(m.x, wrt=m.x, rule=_int4)
self.assertTrue(isinstance(m.int1, Expression))
self.assertTrue(isinstance(m.int2, Expression))
self.assertTrue(isinstance(m.int3, Expression))
self.assertTrue(isinstance(m.int4, Expression))
self.assertTrue(m.int1.get_continuousset() is m.t)
self.assertTrue(m.int2.get_continuousset() is m.t)
self.assertTrue(m.int3.get_continuousset() is m.t)
self.assertTrue(m.int4.get_continuousset() is m.x)
self.assertEqual(len(m.int1), 1)
self.assertEqual(len(m.int2), 3)
self.assertEqual(len(m.int3), 2)
self.assertEqual(len(m.int4), 1)
self.assertTrue(m.int1.type() is Integral)
self.assertTrue(m.int2.type() is Integral)
self.assertTrue(m.int3.type() is Integral)
self.assertTrue(m.int4.type() is Integral)
repn = generate_standard_repn(m.int1.expr)
self.assertEqual(repn.linear_coefs, (0.5, 0.5))
self.assertTrue(repn.linear_vars[0] is m.v[1])
self.assertTrue(repn.linear_vars[1] is m.v[0])
repn = generate_standard_repn(m.int2[1].expr)
self.assertEqual(repn.linear_coefs, (0.5, 0.5))
self.assertTrue(repn.linear_vars[0] is m.v2[1, 1])
self.assertTrue(repn.linear_vars[1] is m.v2[1, 0])
repn = generate_standard_repn(m.int4.expr)
self.assertEqual(repn.linear_coefs, (1.25, 1.25, 1.25, 1.25))
self.assertTrue(repn.linear_vars[0] is m.v3[1, 10])
self.assertTrue(repn.linear_vars[1] is m.v3[0, 10])
self.assertTrue(repn.linear_vars[2] is m.v3[1, 5])
self.assertTrue(repn.linear_vars[3] is m.v3[0, 5])