本文整理汇总了Python中pyne.mesh.Mesh.src方法的典型用法代码示例。如果您正苦于以下问题:Python Mesh.src方法的具体用法?Python Mesh.src怎么用?Python Mesh.src使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pyne.mesh.Mesh
的用法示例。
在下文中一共展示了Mesh.src方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_analog_single_tet
# 需要导入模块: from pyne.mesh import Mesh [as 别名]
# 或者: from pyne.mesh.Mesh import src [as 别名]
def test_analog_single_tet():
"""This test tests uniform sampling within a single tetrahedron. This is
done by dividing the tetrahedron in 4 smaller tetrahedrons and ensuring
that each sub-tet is sampled equally.
"""
seed(1953)
mesh = iMesh.Mesh()
v1 = [0, 0, 0]
v2 = [1, 0, 0]
v3 = [0, 1, 0]
v4 = [0, 0, 1]
verts = mesh.createVtx([v1, v2, v3, v4])
mesh.createEnt(iMesh.Topology.tetrahedron, verts)
m = Mesh(structured=False, mesh=mesh)
m.src = IMeshTag(1, float)
m.src[:] = np.array([1])
m.mesh.save("tet.h5m")
center = m.ve_center(list(m.iter_ve())[0])
subtets = [[center, v1, v2, v3], [center, v1, v2, v4], [center, v1, v3, v4], [center, v2, v3, v4]]
sampler = Sampler("tet.h5m", "src", np.array([0, 1]), False)
num_samples = 5000
score = 1.0 / num_samples
tally = np.zeros(shape=(4))
for i in range(num_samples):
s = sampler.particle_birth([uniform(0, 1) for x in range(6)])
assert_equal(s[4], 1.0)
for i, tet in enumerate(subtets):
if point_in_tet(tet, [s[0], s[1], s[2]]):
tally[i] += score
break
for t in tally:
assert abs(t - 0.25) / 0.25 < 0.2
示例2: test_analog_multiple_hex
# 需要导入模块: from pyne.mesh import Mesh [as 别名]
# 或者: from pyne.mesh.Mesh import src [as 别名]
def test_analog_multiple_hex():
"""This test tests that particle are sampled uniformly from a uniform source
defined on eight mesh volume elements in two energy groups. This is done
using the exact same method ass test_analog_multiple_hex.
"""
seed(1953)
m = Mesh(structured=True, structured_coords=[[0, 0.5, 1], [0, 0.5, 1], [0, 0.5, 1]], mats=None)
m.src = IMeshTag(2, float)
m.src[:] = np.ones(shape=(8, 2))
m.mesh.save("sampling_mesh.h5m")
sampler = Sampler("sampling_mesh.h5m", "src", np.array([0, 0.5, 1]), False)
num_samples = 5000
score = 1.0 / num_samples
num_divs = 2
tally = np.zeros(shape=(num_divs, num_divs, num_divs, num_divs))
for i in range(num_samples):
s = sampler.particle_birth([uniform(0, 1) for x in range(6)])
assert_equal(s[4], 1.0)
tally[int(s[0] * num_divs), int(s[1] * num_divs), int(s[2] * num_divs), int(s[3] * num_divs)] += score
for i in range(0, 4):
for j in range(0, 2):
halfspace_sum = np.sum(np.rollaxis(tally, i)[j, :, :, :])
assert abs(halfspace_sum - 0.5) / 0.5 < 0.1
示例3: test_analog_single_hex
# 需要导入模块: from pyne.mesh import Mesh [as 别名]
# 或者: from pyne.mesh.Mesh import src [as 别名]
def test_analog_single_hex():
"""This test tests that particles of sampled evenly within the phase-space
of a single mesh volume element with one energy group in an analog sampling
scheme. This done by dividing each dimension (x, y, z, E) in half, then
sampling particles and tallying on the basis of which of the 2^4 = 8 regions
of phase space the particle is born into.
"""
seed(1953)
m = Mesh(structured=True, structured_coords=[[0, 1], [0, 1], [0, 1]], mats=None)
m.src = IMeshTag(1, float)
m.src[0] = 1.0
m.mesh.save("sampling_mesh.h5m")
sampler = Sampler("sampling_mesh.h5m", "src", np.array([0, 1]), False)
num_samples = 5000
score = 1.0 / num_samples
num_divs = 2
tally = np.zeros(shape=(num_divs, num_divs, num_divs, num_divs))
for i in range(num_samples):
s = sampler.particle_birth(np.array([uniform(0, 1) for x in range(6)]))
assert_equal(s[4], 1.0) # analog: all weights must be one
tally[int(s[0] * num_divs), int(s[1] * num_divs), int(s[2] * num_divs), int(s[3] * num_divs)] += score
# Test that each half-space of phase space (e.g. x > 0.5) is sampled about
# half the time.
for i in range(0, 4):
for j in range(0, 2):
assert abs(np.sum(np.rollaxis(tally, i)[j, :, :, :]) - 0.5) < 0.05
示例4: test_bias_spatial
# 需要导入模块: from pyne.mesh import Mesh [as 别名]
# 或者: from pyne.mesh.Mesh import src [as 别名]
def test_bias_spatial():
"""This test tests a user-specified biasing scheme for which the only 1
bias group is supplied for a source distribution containing two energy
groups. This bias group is applied to both energy groups. In this test,
the user-supplied bias distribution that was choosen, correspondes to
uniform sampling, so that results can be checked against Case 1 in the
theory manual.
"""
seed(1953)
m = Mesh(structured=True, structured_coords=[[0, 3, 3.5], [0, 1], [0, 1]], mats=None)
m.src = IMeshTag(2, float)
m.src[:] = [[2.0, 1.0], [9.0, 3.0]]
m.bias = IMeshTag(1, float)
m.bias[:] = [1, 1]
e_bounds = np.array([0, 0.5, 1.0])
m.mesh.save("sampling_mesh.h5m")
sampler = Sampler("sampling_mesh.h5m", "src", e_bounds, "bias")
num_samples = 10000
score = 1.0 / num_samples
num_divs = 2
num_e = 2
spatial_tally = np.zeros(shape=(num_divs, num_divs, num_divs))
e_tally = np.zeros(shape=(4)) # number of phase space groups
for i in range(num_samples):
s = sampler.particle_birth(np.array([uniform(0, 1) for x in range(6)]))
if s[0] < 3.0:
assert_almost_equal(s[4], 0.7) # hand calcs
else:
assert_almost_equal(s[4], 2.8) # hand calcs
spatial_tally[int(s[0] * num_divs / 3.5), int(s[1] * num_divs / 1.0), int(s[2] * num_divs / 1.0)] += score
if s[0] < 3 and s[3] < 0.5:
e_tally[0] += score
elif s[0] < 3 and s[3] > 0.5:
e_tally[1] += score
if s[0] > 3 and s[3] < 0.5:
e_tally[2] += score
if s[0] > 3 and s[3] > 0.5:
e_tally[3] += score
for i in range(0, 3):
for j in range(0, 2):
halfspace_sum = np.sum(np.rollaxis(spatial_tally, i)[j, :, :])
assert abs(halfspace_sum - 0.5) / 0.5 < 0.1
expected_e_tally = [4.0 / 7, 2.0 / 7, 3.0 / 28, 1.0 / 28] # hand calcs
for i in range(4):
assert abs(e_tally[i] - expected_e_tally[i]) / expected_e_tally[i] < 0.1
示例5: test_uniform
# 需要导入模块: from pyne.mesh import Mesh [as 别名]
# 或者: from pyne.mesh.Mesh import src [as 别名]
def test_uniform():
"""This test tests that the uniform biasing scheme:
1. Samples space uniformly. This is checked using the same method
described in test_analog_single_hex().
2. Adjusts weights accordingly. Sample calculations are provided in Case 1
in the Theory Manual.
"""
seed(1953)
m = Mesh(structured=True, structured_coords=[[0, 3, 3.5], [0, 1], [0, 1]], mats=None)
m.src = IMeshTag(2, float)
m.src[:] = [[2.0, 1.0], [9.0, 3.0]]
e_bounds = np.array([0, 0.5, 1.0])
m.mesh.save("sampling_mesh.h5m")
sampler = Sampler("sampling_mesh.h5m", "src", e_bounds, True)
num_samples = 10000
score = 1.0 / num_samples
num_divs = 2
num_e = 2
spatial_tally = np.zeros(shape=(num_divs, num_divs, num_divs))
e_tally = np.zeros(shape=(4)) # number of phase space groups
for i in range(num_samples):
s = sampler.particle_birth(np.array([uniform(0, 1) for x in range(6)]))
if s[0] < 3.0:
assert_almost_equal(s[4], 0.7) # hand calcs
else:
assert_almost_equal(s[4], 2.8) # hand calcs
spatial_tally[int(s[0] * num_divs / 3.5), int(s[1] * num_divs / 1.0), int(s[2] * num_divs / 1.0)] += score
if s[0] < 3 and s[3] < 0.5:
e_tally[0] += score
elif s[0] < 3 and s[3] > 0.5:
e_tally[1] += score
if s[0] > 3 and s[3] < 0.5:
e_tally[2] += score
if s[0] > 3 and s[3] > 0.5:
e_tally[3] += score
for i in range(0, 3):
for j in range(0, 2):
halfspace_sum = np.sum(np.rollaxis(spatial_tally, i)[j, :, :])
assert abs(halfspace_sum - 0.5) / 0.5 < 0.1
expected_e_tally = [4.0 / 7, 2.0 / 7, 3.0 / 28, 1.0 / 28] # hand calcs
for i in range(4):
assert abs(e_tally[i] - expected_e_tally[i]) / expected_e_tally[i] < 0.1
示例6: test_bias
# 需要导入模块: from pyne.mesh import Mesh [as 别名]
# 或者: from pyne.mesh.Mesh import src [as 别名]
def test_bias():
"""This test tests that a user-specified biasing scheme:
1. Samples space uniformly according to the scheme.
2. Adjusts weights accordingly. Sample calculations are provided in Case 2
in the Theory Manual.
"""
seed(1953)
m = Mesh(structured=True, structured_coords=[[0, 3, 3.5], [0, 1], [0, 1]], mats=None)
m.src = IMeshTag(2, float)
m.src[:] = [[2.0, 1.0], [9.0, 3.0]]
e_bounds = np.array([0, 0.5, 1.0])
m.bias = IMeshTag(2, float)
m.bias[:] = [[1.0, 2.0], [3.0, 3.0]]
m.mesh.save("sampling_mesh.h5m")
sampler = Sampler("sampling_mesh.h5m", "src", e_bounds, "bias")
num_samples = 10000
score = 1.0 / num_samples
num_divs = 2
tally = np.zeros(shape=(4))
for i in range(num_samples):
s = sampler.particle_birth(np.array([uniform(0, 1) for x in range(6)]))
if s[0] < 3:
if s[3] < 0.5:
assert_almost_equal(s[4], 1.6) # hand calcs
tally[0] += score
else:
assert_almost_equal(s[4], 0.4) # hand calcs
tally[1] += score
else:
if s[3] < 0.5:
assert_almost_equal(s[4], 2.4) # hand calcs
tally[2] += score
else:
assert_almost_equal(s[4], 0.8) # hand calcs
tally[3] += score
expected_tally = [0.25, 0.5, 0.125, 0.125] # hand calcs
for a, b in zip(tally, expected_tally):
assert abs(a - b) / b < 0.25