本文整理汇总了Python中pymodule.PassingData.min_score_ls方法的典型用法代码示例。如果您正苦于以下问题:Python PassingData.min_score_ls方法的具体用法?Python PassingData.min_score_ls怎么用?Python PassingData.min_score_ls使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pymodule.PassingData
的用法示例。
在下文中一共展示了PassingData.min_score_ls方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: run
# 需要导入模块: from pymodule import PassingData [as 别名]
# 或者: from pymodule.PassingData import min_score_ls [as 别名]
def run(self):
"""
2008-08-19
"""
if self.debug:
import pdb
pdb.set_trace()
db = Stock_250kDB.Stock_250kDB(drivername=self.drivername, username=self.db_user,
password=self.db_passwd, hostname=self.hostname, database=self.dbname, schema=self.schema)
db.setup(create_tables=False)
session = db.session
total_gene_id_ls = get_total_gene_ls(db.metadata.bind)
no_of_total_genes = len(total_gene_id_ls)
#no_of_total_genes = self.getNoOfTotalGenes(db, self.gene_table, self.tax_id)
#if self.commit:
# session.begin()
_type = self.getTopSNPTestType(self.get_closest, self.min_MAF, \
self.allow_two_sample_overlapping, self.results_type,\
self.test_type_id, self.null_distribution_type_id)
snps_context_wrapper = self.dealWithSnpsContextWrapper(self.snps_context_picklef, self.min_distance, self.get_closest)
pd = PassingData(list_type_id=self.list_type_id,
snps_context_wrapper=snps_context_wrapper, \
no_of_total_genes=no_of_total_genes,
results_directory=self.results_directory, \
min_MAF=self.min_MAF,
get_closest=self.get_closest,
min_distance=self.min_distance,\
no_of_top_snps=self.no_of_top_snps,
min_sample_size=self.min_sample_size,
test_type_id=self.test_type_id, \
results_type=self.results_type,
no_of_permutations=self.no_of_permutations,\
no_of_min_breaks=self.no_of_min_breaks,
type_id=_type.id,\
null_distribution_type_id=self.null_distribution_type_id,\
allow_two_sample_overlapping=self.allow_two_sample_overlapping,
total_gene_id_ls=total_gene_id_ls,\
min_score=self.min_score,
commit=self.commit)
if getattr(self, 'output_fname', None):
writer = csv.writer(open(self.output_fname, 'w'), delimiter='\t')
header_row = []
for column in CandidateGeneTopSNPTest.c.keys():
header_row.append(column)
writer.writerow(header_row)
else:
writer = None
#2008-10-31 setting up list accordingly
if self.min_score:
pd.min_score_ls = [self.min_score]
else:
pd.no_of_top_snps_ls = [self.no_of_top_snps]
for results_id in self.results_id_ls:
pd.results_id = results_id
#self.runEnrichmentTestToGetNullData(session, pd)
return_data = self.runHGTest(pd)
result = return_data.result_ls[0]
if result is not None:
result.type = _type #assign the type here
row = []
for column in result.c.keys():
row.append(getattr(result, column))
print '%s: %s'%(column, row[-1])
if writer:
writer.writerow(row)
session.save(result)
if self.commit:
session.flush()
示例2: computing_node_handler
# 需要导入模块: from pymodule import PassingData [as 别名]
# 或者: from pymodule.PassingData import min_score_ls [as 别名]
def computing_node_handler(self, communicator, data, comp_param_obj):
"""
2009-1-22
deal with option self.store_null_data
2008-11-12
turn runHGTest() back into life
turn off runEnrichmentTestToGetNullData()
2008-10-31
runEnrichmentTestToGetNullData() is gonna get data at all different no_of_top_snps's or min_score's
2008-10-26
handle (min_score, rank_gap, stop_rank)
handle scenario that rank_gap is negative and so the parameters tried are descending.
2008-08-20
"""
node_rank = communicator.rank
sys.stderr.write("Node no.%s working...\n"%node_rank)
data = cPickle.loads(data)
result_ls = []
null_data_ls = []
pd = PassingData(snps_context_wrapper=comp_param_obj.snps_context_wrapper,\
no_of_total_genes=comp_param_obj.no_of_total_genes, \
results_directory=comp_param_obj.results_directory, \
min_MAF=comp_param_obj.min_MAF, \
get_closest=self.get_closest,
min_distance=self.min_distance, \
no_of_top_snps=self.no_of_top_snps, #2008-10-25 no_of_top_snps is useless. overwritten later
min_sample_size=self.min_sample_size,
test_type_id=self.test_type_id, \
results_type=self.results_type,
no_of_permutations=self.no_of_permutations,\
no_of_min_breaks=self.no_of_min_breaks,
type_id=comp_param_obj.type_id,\
null_distribution_type_id=self.null_distribution_type_id,\
allow_two_sample_overlapping=self.allow_two_sample_overlapping,
total_gene_id_ls=comp_param_obj.total_gene_id_ls,\
min_score=self.min_score,
commit=self.commit) #2008-10-25 min_score is useless. overwritten later
#2008-10-25
#if rank_gap is negative, stop_marker means the minimum cutoff
#if rank_gap is positive, stop_marker means the maximum cutoff
#both signs have to be swapped in the case of negative rank_gap
"""
if self.rank_gap<0:
stop_marker = -self.stop_rank
else:
stop_marker = self.stop_rank
for results_id, list_type_id in data:
if self.debug:
sys.stderr.write("working on results_id=%s, list_type_id=%s, type_id=%s .\n"%(results_id, list_type_id, pd.type_id))
i = 0
#reset it to zero!!
if self.rank_gap<0: #has to be less than -self.stop_rank in order to pass first round. because stop_marker=-stop_rank when rank_gap<0.
current_marker = stop_marker - 1
else:
current_marker = stop_marker -1
while current_marker<stop_marker: #add one more layer to look at certain top genes
if self.min_score is not None:
current_marker = self.min_score +i*self.rank_gap
pd.min_score = current_marker
else:
current_marker = self.no_of_top_snps + i*self.rank_gap
pd.no_of_top_snps = current_marker
if self.rank_gap<0:
current_marker = -current_marker
else:
current_marker = current_marker
pd.results_id = results_id
pd.list_type_id = list_type_id
if self.debug:
sys.stderr.write("working on results_id=%s, list_type_id=%s, current_marker=%s.\n"%\
(pd.results_id, pd.list_type_id, current_marker))
i += 1
result = self.runHGTest(pd)
if result is not None:
result_ls.append(result)
"""
pd.commit = 0 #commit once afterwards. commit runtime would render 'Lock wait timeout exceeded; try restarting transaction'
for results_id, list_type_id, cutoff in data:
if self.debug:
sys.stderr.write("working on results_id=%s, list_type_id=%s, type_id=%s, cutoff %s.\n"%(results_id, list_type_id, pd.type_id, cutoff))
pd.results_id = results_id
pd.list_type_id = list_type_id
if self.min_score:
pd.min_score_ls = [cutoff]
pd.min_score = cutoff
else:
pd.no_of_top_snps_ls = [cutoff]
pd.no_of_top_snps = cutoff
if self.store_null_data:
return_data = self.runEnrichmentTestToGetNullData(comp_param_obj.session, pd)
else:
return_data = self.runHGTest(pd)
if return_data:
result_ls += return_data.result_ls
null_data_ls += return_data.null_data_ls
#.........这里部分代码省略.........