当前位置: 首页>>代码示例>>Python>>正文


Python pymc3.summary函数代码示例

本文整理汇总了Python中pymc3.summary函数的典型用法代码示例。如果您正苦于以下问题:Python summary函数的具体用法?Python summary怎么用?Python summary使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了summary函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: run

def run(n=5000):
    with model_1:
        xstart = pm.find_MAP()
        xstep = pm.Slice()
        trace = pm.sample(5000, xstep, xstart, random_seed=123, progressbar=True)

        pm.summary(trace)
开发者ID:21hub,项目名称:pymc3,代码行数:7,代码来源:lightspeed_example.py

示例2: test_value_n_eff_rhat

 def test_value_n_eff_rhat(self):
     mu = -2.1
     tau = 1.3
     with Model():
         Normal('x0', mu, tau, testval=floatX_array(.1)) # 0d
         Normal('x1', mu, tau, shape=2, testval=floatX_array([.1, .1]))# 1d
         Normal('x2', mu, tau, shape=(2, 2),
                testval=floatX_array(np.tile(.1, (2, 2))))# 2d
         Normal('x3', mu, tau, shape=(2, 2, 3),
                testval=floatX_array(np.tile(.1, (2, 2, 3))))# 3d
         trace = pm.sample(100, step=pm.Metropolis())
     for varname in trace.varnames:
         # test effective_n value
         n_eff = pm.effective_n(trace, varnames=[varname])[varname]
         n_eff_df = np.asarray(
                 pm.summary(trace, varnames=[varname])['n_eff']
                              ).reshape(n_eff.shape)
         npt.assert_equal(n_eff, n_eff_df)
         
         # test Rhat value
         rhat = pm.gelman_rubin(trace, varnames=[varname])[varname]
         rhat_df = np.asarray(
                 pm.summary(trace, varnames=[varname])['Rhat']
                              ).reshape(rhat.shape)
         npt.assert_equal(rhat, rhat_df)
开发者ID:alexander-belikov,项目名称:pymc3,代码行数:25,代码来源:test_stats.py

示例3: test_summary_1d_variable_model

def test_summary_1d_variable_model():
    mu = -2.1
    tau = 1.3
    with Model() as model:
        x = Normal('x', mu, tau, shape=2, testval=[.1, .1])
        step = Metropolis(model.vars, np.diag([1.]), blocked=True)
        trace = pm.sample(100, step=step)
    pm.summary(trace)
开发者ID:jameshensman,项目名称:pymc3,代码行数:8,代码来源:test_stats.py

示例4: test_summary_2d_variable_model

 def test_summary_2d_variable_model(self):
     mu = -2.1
     tau = 1.3
     with Model() as model:
         Normal('x', mu, tau, shape=(2, 2),
                testval=floatX_array(np.tile(.1, (2, 2))))
         step = Metropolis(model.vars, np.diag([1.]), blocked=True)
         trace = pm.sample(100, step=step)
     pm.summary(trace)
开发者ID:springcoil,项目名称:pymc3,代码行数:9,代码来源:test_stats.py

示例5: __init__

    def __init__(self,X_train,y_train,n_hidden,lam=1):
        n_train = y_train.shape[0]
        n_dim = X_train.shape[1]
        print X_train.shape
        with pm.Model() as rbfnn:
            C = pm.Normal('C',mu=0,sd=10,shape=(n_hidden))
            #beta = pm.Gamma('beta',1,1)
            w = pm.Normal('w',mu=0,sd=10,shape=(n_hidden+1))
            
            #component, updates = theano.scan(fn=lambda x: T.sum(C-x)**2,sequences=[X_train])
            y_out=[]
            for x in X_train:
                #rbf_out =  T.exp(-lam*T.sum((C-x)**2,axis=1)) 
                #1d speed up
                rbf_out =  T.exp(-lam*(C-x)**2)
                #rbf_out = theano.printing.Print(rbf_out)                 
                rbf_out_biased = \
                        T.concatenate([ rbf_out, T.alloc(1,1) ], 0)
                y_out.append(T.dot(w,rbf_out_biased))
            
            y = pm.Normal('y',mu=y_out,sd=0.01,observed=y_train)
            
            start = pm.find_MAP(fmin=scipy.optimize.fmin_l_bfgs_b)
            print start
            step = pm.NUTS(scaling=start)
            trace = pm.sample(2000, step, progressbar=False)
            step = pm.NUTS(scaling=trace[-1])
            trace = pm.sample(20000,step,start=trace[-1])
            

            print summary(trace, vars=['C', 'w'])

            vars = trace.varnames   
            for i, v in enumerate(vars):
                for d in trace.get_values(v, combine=False, squeeze=False):
                    d=np.squeeze(d)
                    with open(str(v)+".txt","w+") as thefile:
                        for item in d:
                            print>>thefile, item

            traceplot(trace)
            plt.show()
开发者ID:jshe857,项目名称:thesis-rbfnn,代码行数:42,代码来源:MC_net.py

示例6: run

def run(n=1500):
    if n == 'short':
        n = 50

    with m:
        trace = pm.sample(n)

    pm.traceplot(trace, varnames=['mu_hat'])

    print('Example observed data: ')
    print(y[:30, :].T)
    print('The true ranking is: ')
    print(yreal.flatten())
    print('The Latent mean is: ')
    latentmu = np.hstack(([0], pm.summary(trace, varnames=['mu_hat'])['mean'].values))
    print(np.round(latentmu, 2))
    print('The estimated ranking is: ')
    print(np.argsort(latentmu))
开发者ID:aloctavodia,项目名称:pymc3,代码行数:18,代码来源:rankdata_ordered.py

示例7: print

import pymc3 as pm
import seaborn as sn
import matplotlib.pyplot as plt

with pm.Model() as model:
    uniform = pm.Uniform('uniform', lower=0, upper=1)
    normal = pm.Normal('normal', mu=0, sd=1)
    beta = pm.Beta('beta', alpha=0.5, beta=0.5)
    exponential = pm.Exponential('exponential', 1.0)

    trace = pm.sample(2000)

print(pm.summary(trace).round(2))

pm.traceplot(trace)
plt.show()
开发者ID:yaochitc,项目名称:learning_libraries,代码行数:16,代码来源:continuous.py

示例8: get_garch_model

}
"""


def get_garch_model():
    r = np.array([28, 8, -3, 7, -1, 1, 18, 12], dtype=np.float64)
    sigma1 = np.array([15, 10, 16, 11, 9, 11, 10, 18], dtype=np.float64)
    alpha0 = np.array([10, 10, 16, 8, 9, 11, 12, 18], dtype=np.float64)
    shape = r.shape

    with Model() as garch:
        alpha1 = Uniform('alpha1', 0., 1., shape=shape)
        beta1 = Uniform('beta1', 0., 1 - alpha1, shape=shape)
        mu = Normal('mu', mu=0., sd=100., shape=shape)
        theta = tt.sqrt(alpha0 + alpha1 * tt.pow(r - mu, 2) +
                        beta1 * tt.pow(sigma1, 2))
        Normal('obs', mu, sd=theta, observed=r)
    return garch


def run(n=1000):
    if n == "short":
        n = 50
    with get_garch_model():
        tr = sample(n, tune=1000)
    return tr


if __name__ == '__main__':
    summary(run())
开发者ID:alexander-belikov,项目名称:pymc3,代码行数:30,代码来源:garch_example.py

示例9: mixed_effects


#.........这里部分代码省略.........
                    )

        # Dependent Variable
        BoundedNegativeBinomial = pm.Bound(pm.NegativeBinomial, lower=1)
        y_est = BoundedNegativeBinomial('y_est', mu=mu, alpha=alpha, observed=y)
        y_pred = BoundedNegativeBinomial('y_pred', mu=mu, alpha=alpha, shape=y.shape)
        # y_est = pm.NegativeBinomial('y_est', mu=mu, alpha=alpha, observed=y)
        # y_pred = pm.NegativeBinomial('y_pred', mu=mu, alpha=alpha, shape=y.shape)
        # y_est = pm.Poisson('y_est', mu=mu, observed=data)
        # y_pred = pm.Poisson('y_pred', mu=mu, shape=data.shape)

        start = pm.find_MAP()
        step = pm.Metropolis(start=start)
        # step = pm.NUTS()
        # backend = pm.backends.Text('test')
        # trace = pm.sample(NSamples, step, start=start, chain=1, njobs=2, progressbar=True, trace=backend)
        trace = pm.sample(NSamples, step, start=start, njobs=1, progressbar=True)

        trace2 = trace
        trace = trace[-burn::thin]

        # waic = pm.waic(trace)
        # dic = pm.dic(trace)



    # with pm.Model() as model:
    #     trace_loaded = pm.backends.sqlite.load('FF49_industry.sqlite')
        # y_pred.dump('FF49_industry_missing/y_pred')


    ## POSTERIOR PREDICTIVE CHECKS
    y_pred = trace.get_values('y_pred')
    pm.summary(trace, vars=covariates)


    # PARAMETER POSTERIORS
    anno_kwargs = {'xycoords': 'data', 'textcoords': 'offset points',
                    'rotation': 90, 'va': 'bottom', 'fontsize': 'large'}
    anno_kwargs2 = {'xycoords': 'data', 'textcoords': 'offset points',
                    'rotation': 0, 'va': 'bottom', 'fontsize': 'large'}


    n0, n1, n2, n3 = 1, 5, 9, 14 # numbering for posterior plots
    # intercepts
    # mn = pm.df_summary(trace)['mean']['Intercept_log__0']
    # ax[0,0].annotate('{:.3f}'.format(mn), xy=(mn,0), xytext=(0,15), color=blue, **anno_kwargs2)
    # mn = pm.df_summary(trace)['mean']['Intercept_log__1']
    # ax[0,0].annotate('{:.3f}'.format(mn), xy=(mn,0), xytext=(0,15), color=purple, **anno_kwargs2)
    # coeffs
    # mn = pm.df_summary(trace)['mean'][2]
    # ax[1,0].annotate('{:.3f}'.format(mn), xy=(mn,0), xytext=(5, 10), color=red, **anno_kwargs)
    # mn = pm.df_summary(trace)['mean'][3]
    # ax[2,0].annotate('{:.3f}'.format(mn), xy=(mn,0), xytext=(5,10), color=red, **anno_kwargs)
    # mn = pm.df_summary(trace)['mean'][4]
    # ax[3,0].annotate('{:.3f}'.format(mn), xy=(mn,0), xytext=(5,10), color=red, **anno_kwargs)
    # plt.savefig('figure1_mixed.png')

    ax = pm.traceplot(trace, vars=['Intercept']+trace.varnames[n0:n1],
            lines={k: v['mean'] for k, v in pm.df_summary(trace).iterrows()}
            )

    for i, mn in enumerate(pm.df_summary(trace)['mean'][n0:n1]): # +1 because up and down intercept
        ax[i,0].annotate('{:.3f}'.format(mn), xy=(mn,0), xytext=(5,10), color=red, **anno_kwargs)
    plt.savefig('figure1_mixed.png')
开发者ID:peitalin,项目名称:CoarseClocks,代码行数:66,代码来源:bayesempirics.py

示例10: posterior_summary

 def posterior_summary(self, **kwargs):
     return pm.summary(self.posterior_, **kwargs)
开发者ID:eric-czech,项目名称:portfolio,代码行数:2,代码来源:models.py

示例11: print

    with mdl_ols:

        ## find MAP using Powell, seems to be more robust
        t1 = time.time()
        start_MAP = pm.find_MAP(fmin=optimize.fmin_powell)
        t2 = time.time()
        print("Found MAP, took %f seconds" % (t2 - t1))

        ## take samples
        t1 = time.time()
        traces_ols = pm.sample(2000, start=start_MAP, step=pm.NUTS(), progressbar=True)
        print()
        t2 = time.time()
        print("Done sampling, took %f seconds" % (t2 - t1))

    pm.summary(traces_ols)
    ## plot the samples and the marginal distributions
    _ = pm.traceplot(
        traces_ols,
        figsize=(12, len(traces_ols.varnames) * 1.5),
        lines={k: v["mean"] for k, v in pm.df_summary(traces_ols).iterrows()},
    )
    plt.show()


do_tstudent = False

if do_tstudent:

    print("Robust Student-t analysis...")
开发者ID:iastro-pt,项目名称:Bayes-IA,代码行数:30,代码来源:linear_regression_outliers.py

示例12: print

print(map_estimate)


from pymc3 import NUTS, sample
from pymc3 import traceplot

with basic_model:

    # obtain starting values via MAP
    start = find_MAP(fmin=optimize.fmin_powell)

    # instantiate sampler
    step = NUTS(scaling=start)

    # draw 2000 posterior samples
    trace = sample(2000, step, start=start)
    trace['alpha'][-5:]
    traceplot(trace)
    plt.show()




from pymc3 import summary
summary(trace)

n = 500
p = 0.3
with Model():
	x = Normal('alpha', mu=0, sd=10)
	print type(x)
开发者ID:shidanxu,项目名称:Meng-Finale,代码行数:31,代码来源:mengpymc.py

示例13: print

    else:
        fit_results = np.array([out.values['decay']*delta_t,
                            np.sqrt(out.covar[0,0])*delta_t,
                            out.values['amplitude'],
                            np.sqrt(out.covar[1,1])])
        print(out.fit_report(min_correl=0.25))

    trace = sm.run(x=data,
                    aB=alpha_B,
                    bB=beta_B,
                    aA=alpha_A,
                    bA=beta_A,
                    delta_t=delta_t,
                    N=N)

    pm.summary(trace)

    traceB_results = np.percentile(trace['B'],(2.5,25,50,75,97.5))
    traceB_results = np.concatenate((traceB_results, [np.std(trace['B'])], [np.mean(trace['B'])]))

    traceA_results=np.percentile(trace['A'],(2.5,25,50,75,97.5))
    traceA_results = np.concatenate((traceA_results, [np.std(trace['A'])], [np.mean(trace['A'])]))

    results = np.concatenate((data_results, fit_results, traceB_results, traceA_results))

    print(results)

    if result_array is None:
        result_array = results
    else:
        result_array = np.vstack((result_array, results))
开发者ID:hstrey,项目名称:Bayesian-Analysis,代码行数:31,代码来源:bayesian_mapping_BA.py

示例14: run

def run(n=5000):
    with model_1:
        trace = pm.sample(n)

        pm.summary(trace)
开发者ID:aloctavodia,项目名称:pymc3,代码行数:5,代码来源:lightspeed_example.py

示例15: two_gaussians

    log_like2 = - 0.5 * n * tt.log(2 * np.pi) \
                - 0.5 * tt.log(dsigma) \
                - 0.5 * (x - mu2).T.dot(isigma).dot(x - mu2)
    return tt.log(w1 * tt.exp(log_like1) + w2 * tt.exp(log_like2))

with pm.Model() as ATMIP_test:
    X = pm.Uniform('X',
                   shape=n,
                   lower=-2. * np.ones_like(mu1),
                   upper=2. * np.ones_like(mu1),
                   testval=-1. * np.ones_like(mu1),
                   transform=None)
    like = pm.Deterministic('like', two_gaussians(X))
    llk = pm.Potential('like', like)

with ATMIP_test:
    step = atmcmc.ATMCMC(n_chains=n_chains, tune_interval=tune_interval,
                         likelihood_name=ATMIP_test.deterministics[0].name)

trcs = atmcmc.ATMIP_sample(
                        n_steps=n_steps,
                        step=step,
                        njobs=njobs,
                        progressbar=True,
                        trace=test_folder,
                        model=ATMIP_test)

pm.summary(trcs)
Pltr = pm.traceplot(trcs, combined=True)
plt.show(Pltr[0][0])
开发者ID:21hub,项目名称:pymc3,代码行数:30,代码来源:ATMIP_2gaussians.py


注:本文中的pymc3.summary函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。