本文整理汇总了Python中pymatgen.transformations.standard_transformations.SubstitutionTransformation类的典型用法代码示例。如果您正苦于以下问题:Python SubstitutionTransformation类的具体用法?Python SubstitutionTransformation怎么用?Python SubstitutionTransformation使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了SubstitutionTransformation类的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: apply_transformation
def apply_transformation(self, structure):
charge = structure.charge
specie = smart_element_or_specie(self._charge_balance_sp)
num_to_remove = charge / specie.oxi_state
num_in_structure = structure.composition[specie]
removal_fraction = num_to_remove / num_in_structure
if removal_fraction < 0:
raise ValueError("addition of specie not yet supported by " "ChargeBalanceTransformation")
trans = SubstitutionTransformation({self._charge_balance_sp: {self._charge_balance_sp: 1 - removal_fraction}})
return trans.apply_transformation(structure)
示例2: test_apply_transformation
def test_apply_transformation(self):
enum_trans = EnumerateStructureTransformation(refine_structure=True)
enum_trans2 = EnumerateStructureTransformation(refine_structure=True,
sort_criteria="nsites")
p = Poscar.from_file(os.path.join(test_dir, 'POSCAR.LiFePO4'),
check_for_POTCAR=False)
struct = p.structure
expected_ans = [1, 3, 1]
for i, frac in enumerate([0.25, 0.5, 0.75]):
trans = SubstitutionTransformation({'Fe': {'Fe': frac}})
s = trans.apply_transformation(struct)
oxitrans = OxidationStateDecorationTransformation(
{'Li': 1, 'Fe': 2, 'P': 5, 'O': -2})
s = oxitrans.apply_transformation(s)
alls = enum_trans.apply_transformation(s, 100)
self.assertEqual(len(alls), expected_ans[i])
self.assertIsInstance(trans.apply_transformation(s), Structure)
for ss in alls:
self.assertIn("energy", ss)
alls = enum_trans2.apply_transformation(s, 100)
self.assertEqual(len(alls), expected_ans[i])
self.assertIsInstance(trans.apply_transformation(s), Structure)
for ss in alls:
self.assertIn("num_sites", ss)
# make sure it works for non-oxidation state decorated structure
trans = SubstitutionTransformation({'Fe': {'Fe': 0.5}})
s = trans.apply_transformation(struct)
alls = enum_trans.apply_transformation(s, 100)
self.assertEqual(len(alls), 3)
self.assertIsInstance(trans.apply_transformation(s), Structure)
for s in alls:
self.assertNotIn("energy", s)
示例3: test_init
def test_init(self):
if not enumlib_present:
raise SkipTest("enumlib not present. Skipping...")
test_dir = os.path.join(os.path.dirname(__file__), "..", "..", "..",
'test_files')
parser = CifParser(os.path.join(test_dir, "LiFePO4.cif"))
struct = parser.get_structures(False)[0]
subtrans = SubstitutionTransformation({'Li': {'Li': 0.5}})
adaptor = EnumlibAdaptor(subtrans.apply_transformation(struct), 1, 2)
adaptor.run()
structures = adaptor.structures
self.assertEqual(len(structures), 86)
for s in structures:
self.assertAlmostEqual(s.composition
.get_atomic_fraction(Element("Li")),
0.5 / 6.5)
adaptor = EnumlibAdaptor(subtrans.apply_transformation(struct), 1, 2,
refine_structure=True)
adaptor.run()
structures = adaptor.structures
self.assertEqual(len(structures), 52)
subtrans = SubstitutionTransformation({'Li': {'Li': 0.25}})
adaptor = EnumlibAdaptor(subtrans.apply_transformation(struct), 1, 1,
refine_structure=True)
adaptor.run()
structures = adaptor.structures
self.assertEqual(len(structures), 1)
for s in structures:
self.assertAlmostEqual(s.composition
.get_atomic_fraction(Element("Li")),
0.25 / 6.25)
#Make sure it works for completely disordered structures.
struct = Structure([[10, 0, 0], [0, 10, 0], [0, 0, 10]], [{'Fe':0.5}],
[[0, 0, 0]])
adaptor = EnumlibAdaptor(struct, 1, 2)
adaptor.run()
self.assertEqual(len(adaptor.structures), 3)
#Make sure it works properly when symmetry is broken by ordered sites.
parser = CifParser(os.path.join(test_dir, "LiFePO4.cif"))
struct = parser.get_structures(False)[0]
subtrans = SubstitutionTransformation({'Li': {'Li': 0.25}})
s = subtrans.apply_transformation(struct)
#REmove some ordered sites to break symmetry.
removetrans = RemoveSitesTransformation([4, 7])
s = removetrans.apply_transformation(s)
adaptor = EnumlibAdaptor(s, 1, 1, enum_precision_parameter=0.01)
adaptor.run()
structures = adaptor.structures
self.assertEqual(len(structures), 4)
struct = Structure([[3, 0, 0], [0, 3, 0], [0, 0, 3]],
[{"Si": 0.5}] * 2, [[0, 0, 0], [0.5, 0.5, 0.5]])
adaptor = EnumlibAdaptor(struct, 1, 3, enum_precision_parameter=0.01)
adaptor.run()
structures = adaptor.structures
self.assertEqual(len(structures), 10)
示例4: apply_transformation
def apply_transformation(self, structure, return_ranked_list=False):
if not return_ranked_list:
raise ValueError("SubstitutionPredictorTransformation doesn't"
" support returning 1 structure")
preds = self._substitutor.pred_from_comp(structure.composition)
preds.sort(key=lambda x: x['probability'], reverse=True)
outputs = []
for pred in preds:
st = SubstitutionTransformation(pred['substitutions'])
output = {'structure': st.apply_transformation(structure),
'probability': pred['probability'],
'threshold': self._threshold, 'substitutions': {}}
#dictionary keys have to be converted to strings for JSON
for key, value in pred['substitutions'].items():
output['substitutions'][str(key)] = str(value)
outputs.append(output)
return outputs
示例5: test_init
def test_init(self):
test_dir = os.path.join(os.path.dirname(__file__), "..", "..", "..", "test_files")
struct = self.get_structure("LiFePO4")
subtrans = SubstitutionTransformation({"Li": {"Li": 0.5}})
adaptor = EnumlibAdaptor(subtrans.apply_transformation(struct), 1, 2)
adaptor.run()
structures = adaptor.structures
self.assertEqual(len(structures), 86)
for s in structures:
self.assertAlmostEqual(s.composition.get_atomic_fraction(Element("Li")), 0.5 / 6.5)
adaptor = EnumlibAdaptor(subtrans.apply_transformation(struct), 1, 2, refine_structure=True)
adaptor.run()
structures = adaptor.structures
self.assertEqual(len(structures), 52)
subtrans = SubstitutionTransformation({"Li": {"Li": 0.25}})
adaptor = EnumlibAdaptor(subtrans.apply_transformation(struct), 1, 1, refine_structure=True)
adaptor.run()
structures = adaptor.structures
self.assertEqual(len(structures), 1)
for s in structures:
self.assertAlmostEqual(s.composition.get_atomic_fraction(Element("Li")), 0.25 / 6.25)
# Make sure it works for completely disordered structures.
struct = Structure([[10, 0, 0], [0, 10, 0], [0, 0, 10]], [{"Fe": 0.5}], [[0, 0, 0]])
adaptor = EnumlibAdaptor(struct, 1, 2)
adaptor.run()
self.assertEqual(len(adaptor.structures), 3)
# Make sure it works properly when symmetry is broken by ordered sites.
struct = self.get_structure("LiFePO4")
subtrans = SubstitutionTransformation({"Li": {"Li": 0.25}})
s = subtrans.apply_transformation(struct)
# REmove some ordered sites to break symmetry.
removetrans = RemoveSitesTransformation([4, 7])
s = removetrans.apply_transformation(s)
adaptor = EnumlibAdaptor(s, 1, 1, enum_precision_parameter=0.01)
adaptor.run()
structures = adaptor.structures
self.assertEqual(len(structures), 4)
struct = Structure([[3, 0, 0], [0, 3, 0], [0, 0, 3]], [{"Si": 0.5}] * 2, [[0, 0, 0], [0.5, 0.5, 0.5]])
adaptor = EnumlibAdaptor(struct, 1, 3, enum_precision_parameter=0.01)
adaptor.run()
structures = adaptor.structures
self.assertEqual(len(structures), 10)
struct = Structure.from_file(os.path.join(test_dir, "EnumerateTest.json"))
adaptor = EnumlibAdaptor(struct, 1, 1)
adaptor.run()
structures = adaptor.structures
self.assertEqual(len(structures), 2)
示例6: test_apply_transformation
def test_apply_transformation(self):
enum_trans = EnumerateStructureTransformation(refine_structure=True)
p = Poscar.from_file(os.path.join(test_dir, "POSCAR.LiFePO4"), check_for_POTCAR=False)
struct = p.structure
expected_ans = [1, 3, 1]
for i, frac in enumerate([0.25, 0.5, 0.75]):
trans = SubstitutionTransformation({"Fe": {"Fe": frac}})
s = trans.apply_transformation(struct)
oxitrans = OxidationStateDecorationTransformation({"Li": 1, "Fe": 2, "P": 5, "O": -2})
s = oxitrans.apply_transformation(s)
alls = enum_trans.apply_transformation(s, 100)
self.assertEqual(len(alls), expected_ans[i])
self.assertIsInstance(trans.apply_transformation(s), Structure)
for s in alls:
self.assertIn("energy", s)
# make sure it works for non-oxidation state decorated structure
trans = SubstitutionTransformation({"Fe": {"Fe": 0.5}})
s = trans.apply_transformation(struct)
alls = enum_trans.apply_transformation(s, 100)
self.assertEqual(len(alls), 3)
self.assertIsInstance(trans.apply_transformation(s), Structure)
for s in alls:
self.assertNotIn("energy", s)
示例7: pred_from_structures
def pred_from_structures(self, target_species, structures_list,
remove_duplicates=True):
"""
performs a structure prediction targeting compounds containing the
target_species and based on a list of structure (those structures
can for instance come from a database like the ICSD). It will return
all the structures formed by ionic substitutions with a probability
higher than the threshold
Args:
target_species:
a list of species with oxidation states
e.g., [Specie('Li',1),Specie('Ni',2), Specie('O',-2)]
structures_list:
a list of dictionnary of the form {'structure':Structure object
,'id':some id where it comes from}
the id can for instance refer to an ICSD id
Returns:
a list of TransformedStructure objects.
"""
result = []
transmuter = StandardTransmuter([])
if len(list(set(target_species) & set(self.get_allowed_species()))) \
!= len(target_species):
raise ValueError("the species in target_species are not allowed"
+ "for the probability model you are using")
for permut in itertools.permutations(target_species):
for s in structures_list:
#check if: species are in the domain,
#and the probability of subst. is above the threshold
els = s['structure'].composition.elements
if len(els) == len(permut) and \
len(list(set(els) & set(self.get_allowed_species()))) == \
len(els) and self._sp.cond_prob_list(permut, els) > \
self._threshold:
clean_subst = {els[i]: permut[i]
for i in xrange(0, len(els))
if els[i] != permut[i]}
if len(clean_subst) == 0:
continue
transf = SubstitutionTransformation(clean_subst)
if Substitutor._is_charge_balanced(
transf.apply_transformation(s['structure'])):
ts = TransformedStructure(
s['structure'], [transf], history=[s['id']],
other_parameters={
'type': 'structure_prediction',
'proba': self._sp.cond_prob_list(permut, els)}
)
result.append(ts)
transmuter.append_transformed_structures([ts])
if remove_duplicates:
transmuter.apply_filter(RemoveDuplicatesFilter(
symprec=self._symprec))
return transmuter.transformed_structures