当前位置: 首页>>代码示例>>Python>>正文


Python SpacegroupAnalyzer.get_refined_structure方法代码示例

本文整理汇总了Python中pymatgen.symmetry.analyzer.SpacegroupAnalyzer.get_refined_structure方法的典型用法代码示例。如果您正苦于以下问题:Python SpacegroupAnalyzer.get_refined_structure方法的具体用法?Python SpacegroupAnalyzer.get_refined_structure怎么用?Python SpacegroupAnalyzer.get_refined_structure使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pymatgen.symmetry.analyzer.SpacegroupAnalyzer的用法示例。


在下文中一共展示了SpacegroupAnalyzer.get_refined_structure方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from pymatgen.symmetry.analyzer import SpacegroupAnalyzer [as 别名]
# 或者: from pymatgen.symmetry.analyzer.SpacegroupAnalyzer import get_refined_structure [as 别名]
    def __init__(self, structure, min_cell_size=1, max_cell_size=1,
                 symm_prec=0.1, enum_precision_parameter=0.001,
                 refine_structure=False):
        """
        Initializes the adapter with a structure and some parameters.

        Args:
            structure: An input structure.
            min_cell_size (int): The minimum cell size wanted. Defaults to 1.
            max_cell_size (int): The maximum cell size wanted. Defaults to 1.
            symm_prec (float): Symmetry precision. Defaults to 0.1.
            enum_precision_parameter (float): Finite precision parameter for
                enumlib. Default of 0.001 is usually ok, but you might need to
                tweak it for certain cells.
            refine_structure (bool): If you are starting from a structure that
                has been relaxed via some electronic structure code,
                it is usually much better to start with symmetry determination
                and then obtain a refined structure. The refined structure have
                cell parameters and atomic positions shifted to the expected
                symmetry positions, which makes it much less sensitive precision
                issues in enumlib. If you are already starting from an
                experimental cif, refinement should have already been done and
                it is not necessary. Defaults to False.
        """
        if refine_structure:
            finder = SpacegroupAnalyzer(structure, symm_prec)
            self.structure = finder.get_refined_structure()
        else:
            self.structure = structure
        self.min_cell_size = min_cell_size
        self.max_cell_size = max_cell_size
        self.symm_prec = symm_prec
        self.enum_precision_parameter = enum_precision_parameter
开发者ID:antoinedewandre,项目名称:pymatgen,代码行数:35,代码来源:enumlib_caller.py

示例2: test_get_refined_structure

# 需要导入模块: from pymatgen.symmetry.analyzer import SpacegroupAnalyzer [as 别名]
# 或者: from pymatgen.symmetry.analyzer.SpacegroupAnalyzer import get_refined_structure [as 别名]
 def test_get_refined_structure(self):
     for a in self.sg.get_refined_structure().lattice.angles:
         self.assertEqual(a, 90)
     refined = self.disordered_sg.get_refined_structure()
     for a in refined.lattice.angles:
         self.assertEqual(a, 90)
     self.assertEqual(refined.lattice.a, refined.lattice.b)
     s = self.get_structure('Li2O')
     sg = SpacegroupAnalyzer(s, 0.001)
     self.assertEqual(sg.get_refined_structure().num_sites, 4 * s.num_sites)
开发者ID:anhhv,项目名称:pymatgen,代码行数:12,代码来源:test_analyzer.py

示例3: refined

# 需要导入模块: from pymatgen.symmetry.analyzer import SpacegroupAnalyzer [as 别名]
# 或者: from pymatgen.symmetry.analyzer.SpacegroupAnalyzer import get_refined_structure [as 别名]
def refined(src="POSCAR"):
    """
    refined poscar を 作成する
    """
    srcpos = Poscar.from_file(src)
    finder = SpacegroupAnalyzer(srcpos.structure, symprec=5e-1, angle_tolerance=8)
    std = finder.get_refined_structure()
    dstpos = Poscar(std)
    dst = "POSCAR_refined"
    Cabinet.reserve_file(dst)
    dstpos.write_file(dst)
开发者ID:hackberry-tree,项目名称:00_workSpace,代码行数:13,代码来源:vasp_poscar.py

示例4: __init__

# 需要导入模块: from pymatgen.symmetry.analyzer import SpacegroupAnalyzer [as 别名]
# 或者: from pymatgen.symmetry.analyzer.SpacegroupAnalyzer import get_refined_structure [as 别名]
    def __init__(
        self,
        structure,
        min_cell_size=1,
        max_cell_size=1,
        symm_prec=0.1,
        enum_precision_parameter=0.001,
        refine_structure=False,
        check_ordered_symmetry=True,
    ):
        """
        Initializes the adapter with a structure and some parameters.

        Args:
            structure: An input structure.
            min_cell_size (int): The minimum cell size wanted. Defaults to 1.
            max_cell_size (int): The maximum cell size wanted. Defaults to 1.
            symm_prec (float): Symmetry precision. Defaults to 0.1.
            enum_precision_parameter (float): Finite precision parameter for
                enumlib. Default of 0.001 is usually ok, but you might need to
                tweak it for certain cells.
            refine_structure (bool): If you are starting from a structure that
                has been relaxed via some electronic structure code,
                it is usually much better to start with symmetry determination
                and then obtain a refined structure. The refined structure have
                cell parameters and atomic positions shifted to the expected
                symmetry positions, which makes it much less sensitive precision
                issues in enumlib. If you are already starting from an
                experimental cif, refinement should have already been done and
                it is not necessary. Defaults to False.
            check_ordered_symmetry (bool): Whether to check the symmetry of
                the ordered sites. If the symmetry of the ordered sites is
                lower, the lowest symmetry ordered sites is included in the
                enumeration. This is important if the ordered sites break
                symmetry in a way that is important getting possible
                structures. But sometimes including ordered sites
                slows down enumeration to the point that it cannot be
                completed. Switch to False in those cases. Defaults to True.
        """
        if refine_structure:
            finder = SpacegroupAnalyzer(structure, symm_prec)
            self.structure = finder.get_refined_structure()
        else:
            self.structure = structure
        self.min_cell_size = min_cell_size
        self.max_cell_size = max_cell_size
        self.symm_prec = symm_prec
        self.enum_precision_parameter = enum_precision_parameter
        self.check_ordered_symmetry = check_ordered_symmetry
        self.structures = None
开发者ID:dcossey014,项目名称:pymatgen,代码行数:52,代码来源:enumlib_caller.py

示例5: refine_structure

# 需要导入模块: from pymatgen.symmetry.analyzer import SpacegroupAnalyzer [as 别名]
# 或者: from pymatgen.symmetry.analyzer.SpacegroupAnalyzer import get_refined_structure [as 别名]
def refine_structure(structure, symprec=1e-3):
    remove_ox = OxidationStateRemovalTransformation()
    structure = remove_ox.apply_transformation(structure)
    sym_finder = SpacegroupAnalyzer(structure=structure, symprec=symprec)
    structure = sym_finder.get_refined_structure()
    get_prim = PrimitiveCellTransformation()
    structure = get_prim.apply_transformation(structure)
    m = structure.lattice.matrix
    x_prod = np.dot(np.cross(m[0], m[1]), m[2])
    if x_prod < 0:
        print(x_prod)
        trans = SupercellTransformation(((1, 0, 0), (0, 0, 1), (0, 1, 0)))
        structure = trans.apply_transformation(structure)
        m = structure.lattice.matrix
        x_prod = np.dot(np.cross(m[0], m[1]), m[2])
        print(x_prod)
        if x_prod < 0:
            raise RuntimeError
    return structure
开发者ID:rousseab,项目名称:pymatgen,代码行数:21,代码来源:helpers.py

示例6: abi_sanitize

# 需要导入模块: from pymatgen.symmetry.analyzer import SpacegroupAnalyzer [as 别名]
# 或者: from pymatgen.symmetry.analyzer.SpacegroupAnalyzer import get_refined_structure [as 别名]
    def abi_sanitize(self, symprec=1e-3, angle_tolerance=5, primitive=True, primitive_standard=False):
        """
        Returns a new structure in which:

            * Structure is refined.
            * Reduced to primitive settings.
            * Lattice vectors are exchanged if the triple product is negative 

        Args:
            symprec: Symmetry precision used to refine the structure.
                if `symprec` is None, so structure refinement is peformed.
            primitive (bool): Whether to convert to a primitive cell.
        """

        from pymatgen.transformations.standard_transformations import PrimitiveCellTransformation, SupercellTransformation

        structure = self.__class__.from_sites(self)

        # Refine structure
        if symprec is not None and angle_tolerance is not None:
            sym_finder = SpacegroupAnalyzer(structure=structure, symprec=symprec, angle_tolerance=angle_tolerance)
            structure = sym_finder.get_refined_structure()

        # Convert to primitive structure.
        if primitive:
            if primitive_standard:
                sym_finder_prim = SpacegroupAnalyzer(structure=structure, symprec=symprec, angle_tolerance=angle_tolerance)
                structure = sym_finder_prim.get_primitive_standard_structure()
            else:
                get_prim = PrimitiveCellTransformation()
                structure = get_prim.apply_transformation(structure)

        # Exchange last two lattice vectors if triple product is negative.
        m = structure.lattice.matrix
        x_prod = np.dot(np.cross(m[0], m[1]), m[2])
        if x_prod < 0:
            trans = SupercellTransformation(((1, 0, 0), (0, 0, 1), (0, 1, 0)))
            structure = trans.apply_transformation(structure)
            m = structure.lattice.matrix
            x_prod = np.dot(np.cross(m[0], m[1]), m[2])
            if x_prod < 0: raise RuntimeError("x_prod is still negative!")

        return structure
开发者ID:akakcolin,项目名称:abipy,代码行数:45,代码来源:structure.py

示例7: get_pattern

# 需要导入模块: from pymatgen.symmetry.analyzer import SpacegroupAnalyzer [as 别名]
# 或者: from pymatgen.symmetry.analyzer.SpacegroupAnalyzer import get_refined_structure [as 别名]
    def get_pattern(self, structure, scaled=True, two_theta_range=(0, 90)):
        """
        Calculates the diffraction pattern for a structure.

        Args:
            structure (Structure): Input structure
            scaled (bool): Whether to return scaled intensities. The maximum
                peak is set to a value of 100. Defaults to True. Use False if
                you need the absolute values to combine XRD plots.
            two_theta_range ([float of length 2]): Tuple for range of
                two_thetas to calculate in degrees. Defaults to (0, 90). Set to
                None if you want all diffracted beams within the limiting
                sphere of radius 2 / wavelength.

        Returns:
            (XRDPattern)
        """
        if self.symprec:
            finder = SpacegroupAnalyzer(structure, symprec=self.symprec)
            structure = finder.get_refined_structure()

        wavelength = self.wavelength
        latt = structure.lattice
        is_hex = latt.is_hexagonal()

        # Obtained from Bragg condition. Note that reciprocal lattice
        # vector length is 1 / d_hkl.
        min_r, max_r = (0, 2 / wavelength) if two_theta_range is None else \
            [2 * sin(radians(t / 2)) / wavelength for t in two_theta_range]

        # Obtain crystallographic reciprocal lattice points within range
        recip_latt = latt.reciprocal_lattice_crystallographic
        recip_pts = recip_latt.get_points_in_sphere(
            [[0, 0, 0]], [0, 0, 0], max_r)
        if min_r:
            recip_pts = [pt for pt in recip_pts if pt[1] >= min_r]

        # Create a flattened array of zs, coeffs, fcoords and occus. This is
        # used to perform vectorized computation of atomic scattering factors
        # later. Note that these are not necessarily the same size as the
        # structure as each partially occupied specie occupies its own
        # position in the flattened array.
        zs = []
        coeffs = []
        fcoords = []
        occus = []
        dwfactors = []

        for site in structure:
            for sp, occu in site.species.items():
                zs.append(sp.Z)
                try:
                    c = ATOMIC_SCATTERING_PARAMS[sp.symbol]
                except KeyError:
                    raise ValueError("Unable to calculate XRD pattern as "
                                     "there is no scattering coefficients for"
                                     " %s." % sp.symbol)
                coeffs.append(c)
                dwfactors.append(self.debye_waller_factors.get(sp.symbol, 0))
                fcoords.append(site.frac_coords)
                occus.append(occu)

        zs = np.array(zs)
        coeffs = np.array(coeffs)
        fcoords = np.array(fcoords)
        occus = np.array(occus)
        dwfactors = np.array(dwfactors)
        peaks = {}
        two_thetas = []

        for hkl, g_hkl, ind, _ in sorted(
                recip_pts, key=lambda i: (i[1], -i[0][0], -i[0][1], -i[0][2])):
            # Force miller indices to be integers.
            hkl = [int(round(i)) for i in hkl]
            if g_hkl != 0:

                d_hkl = 1 / g_hkl

                # Bragg condition
                theta = asin(wavelength * g_hkl / 2)

                # s = sin(theta) / wavelength = 1 / 2d = |ghkl| / 2 (d =
                # 1/|ghkl|)
                s = g_hkl / 2

                # Store s^2 since we are using it a few times.
                s2 = s ** 2

                # Vectorized computation of g.r for all fractional coords and
                # hkl.
                g_dot_r = np.dot(fcoords, np.transpose([hkl])).T[0]

                # Highly vectorized computation of atomic scattering factors.
                # Equivalent non-vectorized code is::
                #
                #   for site in structure:
                #      el = site.specie
                #      coeff = ATOMIC_SCATTERING_PARAMS[el.symbol]
                #      fs = el.Z - 41.78214 * s2 * sum(
                #          [d[0] * exp(-d[1] * s2) for d in coeff])
#.........这里部分代码省略.........
开发者ID:adengz,项目名称:pymatgen,代码行数:103,代码来源:xrd.py

示例8: __init__

# 需要导入模块: from pymatgen.symmetry.analyzer import SpacegroupAnalyzer [as 别名]
# 或者: from pymatgen.symmetry.analyzer.SpacegroupAnalyzer import get_refined_structure [as 别名]
    def __init__(self, struct, symprec=None):
        format_str = "{:.8f}"

        block = OrderedDict()
        loops = []
        spacegroup = ("P 1", 1)
        if symprec is not None:
            sf = SpacegroupAnalyzer(struct, symprec)
            spacegroup = (sf.get_space_group_symbol(),
                          sf.get_space_group_number())
            # Needs the refined struture when using symprec. This converts
            # primitive to conventional structures, the standard for CIF.
            struct = sf.get_refined_structure()

        latt = struct.lattice
        comp = struct.composition
        no_oxi_comp = comp.element_composition
        block["_symmetry_space_group_name_H-M"] = spacegroup[0]
        for cell_attr in ['a', 'b', 'c']:
            block["_cell_length_" + cell_attr] = format_str.format(
                getattr(latt, cell_attr))
        for cell_attr in ['alpha', 'beta', 'gamma']:
            block["_cell_angle_" + cell_attr] = format_str.format(
                getattr(latt, cell_attr))
        block["_symmetry_Int_Tables_number"] = spacegroup[1]
        block["_chemical_formula_structural"] = no_oxi_comp.reduced_formula
        block["_chemical_formula_sum"] = no_oxi_comp.formula
        block["_cell_volume"] = latt.volume.__str__()

        reduced_comp, fu = no_oxi_comp.get_reduced_composition_and_factor()
        block["_cell_formula_units_Z"] = str(int(fu))

        if symprec is None:
            block["_symmetry_equiv_pos_site_id"] = ["1"]
            block["_symmetry_equiv_pos_as_xyz"] = ["x, y, z"]
        else:
            sf = SpacegroupAnalyzer(struct, symprec)

            def round_symm_trans(i):

                for t in TRANSLATIONS.values():
                    if abs(i - t) < symprec:
                        return t
                if abs(i - round(i)) < symprec:
                    return 0
                raise ValueError("Invalid translation!")

            symmops = []
            for op in sf.get_symmetry_operations():
                v = op.translation_vector
                v = [round_symm_trans(i) for i in v]
                symmops.append(SymmOp.from_rotation_and_translation(
                    op.rotation_matrix, v))

            ops = [op.as_xyz_string() for op in symmops]
            block["_symmetry_equiv_pos_site_id"] = \
                ["%d" % i for i in range(1, len(ops) + 1)]
            block["_symmetry_equiv_pos_as_xyz"] = ops

        loops.append(["_symmetry_equiv_pos_site_id",
                      "_symmetry_equiv_pos_as_xyz"])

        contains_oxidation = True
        try:
            symbol_to_oxinum = OrderedDict([
                (el.__str__(), float(el.oxi_state))
                for el in sorted(comp.elements)])
        except AttributeError:
            symbol_to_oxinum = OrderedDict([(el.symbol, 0) for el in
                                            sorted(comp.elements)])
            contains_oxidation = False
        if contains_oxidation:
            block["_atom_type_symbol"] = symbol_to_oxinum.keys()
            block["_atom_type_oxidation_number"] = symbol_to_oxinum.values()
            loops.append(["_atom_type_symbol", "_atom_type_oxidation_number"])

        atom_site_type_symbol = []
        atom_site_symmetry_multiplicity = []
        atom_site_fract_x = []
        atom_site_fract_y = []
        atom_site_fract_z = []
        atom_site_label = []
        atom_site_occupancy = []
        count = 1
        if symprec is None:
            for site in struct:
                for sp, occu in site.species_and_occu.items():
                    atom_site_type_symbol.append(sp.__str__())
                    atom_site_symmetry_multiplicity.append("1")
                    atom_site_fract_x.append("{0:f}".format(site.a))
                    atom_site_fract_y.append("{0:f}".format(site.b))
                    atom_site_fract_z.append("{0:f}".format(site.c))
                    atom_site_label.append("{}{}".format(sp.symbol, count))
                    atom_site_occupancy.append(occu.__str__())
                    count += 1
        else:
            # The following just presents a deterministic ordering.
            unique_sites = [
                (sorted(sites, key=lambda s: tuple([abs(x) for x in
                                                   s.frac_coords]))[0],
#.........这里部分代码省略.........
开发者ID:shyamd,项目名称:pymatgen,代码行数:103,代码来源:cif.py

示例9: apply_transformation

# 需要导入模块: from pymatgen.symmetry.analyzer import SpacegroupAnalyzer [as 别名]
# 或者: from pymatgen.symmetry.analyzer.SpacegroupAnalyzer import get_refined_structure [as 别名]
    def apply_transformation(self, structure, return_ranked_list=False):
        """
        Return either a single ordered structure or a sequence of all ordered
        structures.

        Args:
            structure: Structure to order.
            return_ranked_list (bool): Whether or not multiple structures are
                returned. If return_ranked_list is a number, that number of
                structures is returned.

        Returns:
            Depending on returned_ranked list, either a transformed structure
            or a list of dictionaries, where each dictionary is of the form
            {"structure" = .... , "other_arguments"}

            The list of ordered structures is ranked by ewald energy / atom, if
            the input structure is an oxidation state decorated structure.
            Otherwise, it is ranked by number of sites, with smallest number of
            sites first.
        """
        try:
            num_to_return = int(return_ranked_list)
        except ValueError:
            num_to_return = 1

        if self.occu_tol:
            species = [dict(d) for d in structure.species_and_occu]
            # Here, we rescale all occupancies such that they meet the frac
            # limit.
            for sp in species:
                for k, v in sp.items():
                    sp[k] = float(Fraction(v).limit_denominator(self.occu_tol))
            structure = Structure(structure.lattice, species,
                                  structure.frac_coords)

        if self.refine_structure:
            finder = SpacegroupAnalyzer(structure, self.symm_prec)
            structure = finder.get_refined_structure()

        contains_oxidation_state = all(
            [hasattr(sp, "oxi_state") and sp.oxi_state != 0 for sp in
             structure.composition.elements]
        )

        if structure.is_ordered:
            warn("Enumeration skipped for structure with composition {} "
                 "because it is ordered".format(structure.composition))
            structures = [structure.copy()]
        else:
            adaptor = EnumlibAdaptor(
                structure, min_cell_size=self.min_cell_size,
                max_cell_size=self.max_cell_size,
                symm_prec=self.symm_prec, refine_structure=False,
                enum_precision_parameter=self.enum_precision_parameter,
                check_ordered_symmetry=self.check_ordered_symmetry)
            adaptor.run()
            structures = adaptor.structures

        original_latt = structure.lattice
        inv_latt = np.linalg.inv(original_latt.matrix)
        ewald_matrices = {}
        all_structures = []
        for s in structures:
            new_latt = s.lattice
            transformation = np.dot(new_latt.matrix, inv_latt)
            transformation = tuple([tuple([int(round(cell)) for cell in row])
                                    for row in transformation])
            if contains_oxidation_state:
                if transformation not in ewald_matrices:
                    s_supercell = structure * transformation
                    ewald = EwaldSummation(s_supercell)
                    ewald_matrices[transformation] = ewald
                else:
                    ewald = ewald_matrices[transformation]
                energy = ewald.compute_sub_structure(s)
                all_structures.append({"num_sites": len(s), "energy": energy,
                                       "structure": s})
            else:
                all_structures.append({"num_sites": len(s), "structure": s})

        def sort_func(s):
            return s["energy"] / s["num_sites"] if contains_oxidation_state \
                else s["num_sites"]

        self._all_structures = sorted(all_structures, key=sort_func)

        if return_ranked_list:
            return self._all_structures[0:num_to_return]
        else:
            return self._all_structures[0]["structure"]
开发者ID:matk86,项目名称:pymatgen,代码行数:93,代码来源:advanced_transformations.py

示例10: SpacegroupAnalyzerTest

# 需要导入模块: from pymatgen.symmetry.analyzer import SpacegroupAnalyzer [as 别名]
# 或者: from pymatgen.symmetry.analyzer.SpacegroupAnalyzer import get_refined_structure [as 别名]
class SpacegroupAnalyzerTest(PymatgenTest):

    def setUp(self):
        p = Poscar.from_file(os.path.join(test_dir, 'POSCAR'))
        self.structure = p.structure
        self.sg = SpacegroupAnalyzer(self.structure, 0.001)
        self.disordered_structure = self.get_structure('Li10GeP2S12')
        self.disordered_sg = SpacegroupAnalyzer(self.disordered_structure, 0.001)
        s = p.structure.copy()
        site = s[0]
        del s[0]
        s.append(site.species_and_occu, site.frac_coords)
        self.sg3 = SpacegroupAnalyzer(s, 0.001)
        graphite = self.get_structure('Graphite')
        graphite.add_site_property("magmom", [0.1] * len(graphite))
        self.sg4 = SpacegroupAnalyzer(graphite, 0.001)

    def test_get_space_symbol(self):
        self.assertEqual(self.sg.get_spacegroup_symbol(), "Pnma")
        self.assertEqual(self.disordered_sg.get_spacegroup_symbol(),
                         "P4_2/nmc")
        self.assertEqual(self.sg3.get_spacegroup_symbol(), "Pnma")
        self.assertEqual(self.sg4.get_spacegroup_symbol(), "R-3m")

    def test_get_space_number(self):
        self.assertEqual(self.sg.get_spacegroup_number(), 62)
        self.assertEqual(self.disordered_sg.get_spacegroup_number(), 137)
        self.assertEqual(self.sg4.get_spacegroup_number(), 166)

    def test_get_hall(self):
        self.assertEqual(self.sg.get_hall(), '-P 2ac 2n')
        self.assertEqual(self.disordered_sg.get_hall(), 'P 4n 2n -1n')

    def test_get_pointgroup(self):
        self.assertEqual(self.sg.get_point_group(), 'mmm')
        self.assertEqual(self.disordered_sg.get_point_group(), '4/mmm')

    def test_get_symmetry_dataset(self):
        ds = self.sg.get_symmetry_dataset()
        self.assertEqual(ds['international'], 'Pnma')

    def test_get_crystal_system(self):
        crystal_system = self.sg.get_crystal_system()
        self.assertEqual('orthorhombic', crystal_system)
        self.assertEqual('tetragonal', self.disordered_sg.get_crystal_system())

    def test_get_symmetry_operations(self):
        fracsymmops = self.sg.get_symmetry_operations()
        symmops = self.sg.get_symmetry_operations(True)
        self.assertEqual(len(symmops), 8)
        latt = self.structure.lattice
        for fop, op in zip(fracsymmops, symmops):
            for site in self.structure:
                newfrac = fop.operate(site.frac_coords)
                newcart = op.operate(site.coords)
                self.assertTrue(np.allclose(latt.get_fractional_coords(newcart),
                                            newfrac))
                found = False
                newsite = PeriodicSite(site.species_and_occu, newcart, latt,
                                       coords_are_cartesian=True)
                for testsite in self.structure:
                    if newsite.is_periodic_image(testsite, 1e-3):
                        found = True
                        break
                self.assertTrue(found)

    def test_get_refined_structure(self):
        for a in self.sg.get_refined_structure().lattice.angles:
            self.assertEqual(a, 90)
        refined = self.disordered_sg.get_refined_structure()
        for a in refined.lattice.angles:
            self.assertEqual(a, 90)
        self.assertEqual(refined.lattice.a, refined.lattice.b)
        s = self.get_structure('Li2O')
        sg = SpacegroupAnalyzer(s, 0.001)
        self.assertEqual(sg.get_refined_structure().num_sites, 4 * s.num_sites)

    def test_get_symmetrized_structure(self):
        symm_struct = self.sg.get_symmetrized_structure()
        for a in symm_struct.lattice.angles:
            self.assertEqual(a, 90)
        self.assertEqual(len(symm_struct.equivalent_sites), 5)

        symm_struct = self.disordered_sg.get_symmetrized_structure()
        self.assertEqual(len(symm_struct.equivalent_sites), 8)
        self.assertEqual([len(i) for i in symm_struct.equivalent_sites],
                         [16,4,8,4,2,8,8,8])
        s1 = symm_struct.equivalent_sites[1][1]
        s2 = symm_struct[symm_struct.equivalent_indices[1][1]]
        self.assertEqual(s1, s2)
        self.assertEqual(self.sg4.get_symmetrized_structure()[0].magmom, 0.1)

    def test_find_primitive(self):
        """
        F m -3 m Li2O testing of converting to primitive cell
        """
        parser = CifParser(os.path.join(test_dir, 'Li2O.cif'))
        structure = parser.get_structures(False)[0]
        s = SpacegroupAnalyzer(structure)
        primitive_structure = s.find_primitive()
#.........这里部分代码省略.........
开发者ID:anhhv,项目名称:pymatgen,代码行数:103,代码来源:test_analyzer.py

示例11: SpacegroupAnalyzerTest

# 需要导入模块: from pymatgen.symmetry.analyzer import SpacegroupAnalyzer [as 别名]
# 或者: from pymatgen.symmetry.analyzer.SpacegroupAnalyzer import get_refined_structure [as 别名]

#.........这里部分代码省略.........
            fracsymmops = sg.get_symmetry_operations()
            symmops = sg.get_symmetry_operations(True)
            latt = structure.lattice
            for fop, op, pgop in zip(fracsymmops, symmops, pgops):
                # translation vector values should all be 0 or 0.5
                t = fop.translation_vector * 2
                self.assertArrayAlmostEqual(t - np.round(t), 0)

                self.assertArrayAlmostEqual(fop.rotation_matrix,
                                            pgop.rotation_matrix)
                for site in structure:
                    newfrac = fop.operate(site.frac_coords)
                    newcart = op.operate(site.coords)
                    self.assertTrue(np.allclose(latt.get_fractional_coords(newcart),
                                                newfrac))
                    found = False
                    newsite = PeriodicSite(site.species_and_occu, newcart, latt,
                                           coords_are_cartesian=True)
                    for testsite in structure:
                        if newsite.is_periodic_image(testsite, 1e-3):
                            found = True
                            break
                    self.assertTrue(found)

                # Make sure this works for any position, not just the atomic
                # ones.
                random_fcoord = np.random.uniform(size=(3))
                random_ccoord = latt.get_cartesian_coords(random_fcoord)
                newfrac = fop.operate(random_fcoord)
                newcart = op.operate(random_ccoord)
                self.assertTrue(np.allclose(latt.get_fractional_coords(newcart),
                                            newfrac))

    def test_get_refined_structure(self):
        for a in self.sg.get_refined_structure().lattice.angles:
            self.assertEqual(a, 90)
        refined = self.disordered_sg.get_refined_structure()
        for a in refined.lattice.angles:
            self.assertEqual(a, 90)
        self.assertEqual(refined.lattice.a, refined.lattice.b)
        s = self.get_structure('Li2O')
        sg = SpacegroupAnalyzer(s, 0.01)
        self.assertEqual(sg.get_refined_structure().num_sites, 4 * s.num_sites)

    def test_get_symmetrized_structure(self):
        symm_struct = self.sg.get_symmetrized_structure()
        for a in symm_struct.lattice.angles:
            self.assertEqual(a, 90)
        self.assertEqual(len(symm_struct.equivalent_sites), 5)

        symm_struct = self.disordered_sg.get_symmetrized_structure()
        self.assertEqual(len(symm_struct.equivalent_sites), 8)
        self.assertEqual([len(i) for i in symm_struct.equivalent_sites],
                         [16,4,8,4,2,8,8,8])
        s1 = symm_struct.equivalent_sites[1][1]
        s2 = symm_struct[symm_struct.equivalent_indices[1][1]]
        self.assertEqual(s1, s2)
        self.assertEqual(self.sg4.get_symmetrized_structure()[0].magmom, 0.1)
        self.assertEqual(symm_struct.wyckoff_symbols[0], '16h')
        # self.assertEqual(symm_struct[0].wyckoff, "16h")

    def test_find_primitive(self):
        """
        F m -3 m Li2O testing of converting to primitive cell
        """
        parser = CifParser(os.path.join(test_dir, 'Li2O.cif'))
开发者ID:matk86,项目名称:pymatgen,代码行数:70,代码来源:test_analyzer.py

示例12: apply_transformation

# 需要导入模块: from pymatgen.symmetry.analyzer import SpacegroupAnalyzer [as 别名]
# 或者: from pymatgen.symmetry.analyzer.SpacegroupAnalyzer import get_refined_structure [as 别名]
    def apply_transformation(self, structure, return_ranked_list=False):
        """
        Return either a single ordered structure or a sequence of all ordered
        structures.

        Args:
            structure: Structure to order.
            return_ranked_list (bool): Whether or not multiple structures are
                returned. If return_ranked_list is a number, that number of
                structures is returned.

        Returns:
            Depending on returned_ranked list, either a transformed structure
            or a list of dictionaries, where each dictionary is of the form
            {"structure" = .... , "other_arguments"}

            The list of ordered structures is ranked by ewald energy / atom, if
            the input structure is an oxidation state decorated structure.
            Otherwise, it is ranked by number of sites, with smallest number of
            sites first.
        """
        try:
            num_to_return = int(return_ranked_list)
        except ValueError:
            num_to_return = 1

        if self.refine_structure:
            finder = SpacegroupAnalyzer(structure, self.symm_prec)
            structure = finder.get_refined_structure()

        contains_oxidation_state = all(
            [hasattr(sp, "oxi_state") and sp.oxi_state != 0 for sp in
             structure.composition.elements]
        )

        structures = None

        if structure.is_ordered:
            warn("Enumeration skipped for structure with composition {} "
                 "because it is ordered".format(structure.composition))
            structures = [structure.copy()]

        if self.max_disordered_sites:
            ndisordered = sum([1 for site in structure if not site.is_ordered])
            if ndisordered > self.max_disordered_sites:
                raise ValueError(
                    "Too many disordered sites! ({} > {})".format(
                        ndisordered, self.max_disordered_sites))
            max_cell_sizes = range(self.min_cell_size, int(
                    math.floor(self.max_disordered_sites / ndisordered)) + 1)

        else:
            max_cell_sizes = [self.max_cell_size]

        for max_cell_size in max_cell_sizes:
            adaptor = EnumlibAdaptor(
                structure, min_cell_size=self.min_cell_size,
                max_cell_size=max_cell_size,
                symm_prec=self.symm_prec, refine_structure=False,
                enum_precision_parameter=self.enum_precision_parameter,
                check_ordered_symmetry=self.check_ordered_symmetry,
                timeout=self.timeout)
            try:
                adaptor.run()
            except EnumError:
                warn("Unable to enumerate for max_cell_size = %d".format(
                    max_cell_size))
            structures = adaptor.structures
            if structures:
                break

        if structures is None:
            raise ValueError("Unable to enumerate")

        original_latt = structure.lattice
        inv_latt = np.linalg.inv(original_latt.matrix)
        ewald_matrices = {}
        all_structures = []
        for s in structures:
            new_latt = s.lattice
            transformation = np.dot(new_latt.matrix, inv_latt)
            transformation = tuple([tuple([int(round(cell)) for cell in row])
                                    for row in transformation])
            if contains_oxidation_state and self.sort_criteria == "ewald":
                if transformation not in ewald_matrices:
                    s_supercell = structure * transformation
                    ewald = EwaldSummation(s_supercell)
                    ewald_matrices[transformation] = ewald
                else:
                    ewald = ewald_matrices[transformation]
                energy = ewald.compute_sub_structure(s)
                all_structures.append({"num_sites": len(s), "energy": energy,
                                       "structure": s})
            else:
                all_structures.append({"num_sites": len(s), "structure": s})

        def sort_func(s):
            return s["energy"] / s["num_sites"] \
                if contains_oxidation_state and self.sort_criteria == "ewald" \
                else s["num_sites"]
#.........这里部分代码省略.........
开发者ID:czhengsci,项目名称:pymatgen,代码行数:103,代码来源:advanced_transformations.py

示例13: convert_to_ieee

# 需要导入模块: from pymatgen.symmetry.analyzer import SpacegroupAnalyzer [as 别名]
# 或者: from pymatgen.symmetry.analyzer.SpacegroupAnalyzer import get_refined_structure [as 别名]
    def convert_to_ieee(self, structure, atol = 0.1, ltol = 0.05):
        """
        Given a structure associated with a tensor, attempts a
        calculation of the tensor in IEEE format according to
        the 1987 IEEE standards.

        Args:
            structure (Structure): a structure associated with the
                tensor to be converted to the IEEE standard
            atol (float): angle tolerance for conversion routines
            ltol (float): length tolerance for conversion routines
        """
        def get_uvec(vec):
            """ Gets a unit vector parallel to input vector"""
            return vec / np.linalg.norm(vec)

        vecs = structure.lattice.matrix
        lengths = np.array(structure.lattice.abc)
        angles = np.array(structure.lattice.angles)

        # Check conventional setting:
        sga = SpacegroupAnalyzer(structure)
        xtal_sys = sga.get_crystal_system()
        conv_struct = sga.get_refined_structure()
        conv_lengths = np.array(conv_struct.lattice.abc)
        conv_angles = np.array(conv_struct.lattice.angles)
        rhombohedral = xtal_sys == "trigonal" and \
                (angles - angles[0] < atol).all()
        if ((np.sort(lengths) - np.sort(conv_lengths) > ltol).any() \
           or (np.sort(angles) - np.sort(conv_angles) > atol).any() \
           or len(structure.sites) != len(conv_struct.sites)) \
           and not rhombohedral:
            raise ValueError("{} structure not in conventional cell, IEEE "\
                             "conversion from non-conventional settings "\
                             "is not yet supported.".format(xtal_sys))

        a = b = c = None
        rotation = np.zeros((3,3))

        # IEEE rules: a,b,c || x1,x2,x3
        if xtal_sys == "cubic":
            rotation = [vecs[i]/lengths[i] for i in range(3)]

        # IEEE rules: a=b in length; c,a || x3, x1
        elif xtal_sys == "tetragonal":            
            rotation = np.array([vec/mag for (mag, vec) in 
                                 sorted(zip(lengths, vecs))])
            if abs(lengths[2] - lengths[1]) < ltol:
                rotation[0], rotation[2] = rotation[2], rotation[0].copy()
            rotation[1] = get_uvec(np.cross(rotation[2], rotation[0]))

        # IEEE rules: c<a<b; c,a || x3,x1
        elif xtal_sys == "orthorhombic":
            rotation = [vec/mag for (mag, vec) in sorted(zip(lengths, vecs))]
            rotation = np.roll(rotation, 2, axis = 0)

        # IEEE rules: c,a || x3,x1, c is threefold axis
        elif xtal_sys in ("trigonal", "hexagonal"):
            # Rhombohedral lattice
            if rhombohedral:
                rotation[0] = get_uvec(vecs[2] - vecs[0])
                rotation[2] = get_uvec(np.sum(vecs, axis=0))
                rotation[1] = get_uvec(np.cross(rotation[2], rotation[0]))
            # Standard hexagonal lattice
            else:
                # find threefold axis:
                tf_mask = np.where(abs(angles-120.0) < atol)
                non_tf_mask = np.logical_not(tf_mask)
                rotation[2] = get_uvec(vecs[tf_mask])
                rotation[0] = get_uvec(vecs[non_tf_mask][0])
                rotation[1] = get_uvec(np.cross(rotation[2], rotation[0]))

        # IEEE rules: b,c || x2,x3; alpha=beta=90, c<a
        elif xtal_sys == "monoclinic":
            # Find unique axis
            umask = abs(angles - 90.0) > atol
            n_umask = np.logical_not(umask)
            rotation[1] = get_uvec(vecs[umask])
            # Shorter of remaining lattice vectors for c axis
            c = [vec/mag for (mag, vec) in 
                 sorted(zip(lengths[n_umask], vecs[n_umask]))][0]
            rotation[2] = np.array(c)
            rotation[0] = np.cross(rotation[1], rotation[2])
        
        # IEEE rules: c || x3
        elif xtal_sys == "triclinic":
            rotation = [vec/mag for (mag, vec) in sorted(zip(lengths, vecs))]
            rotation = np.roll(rotation, 2, axis = 0)
            rotation[1] = get_uvec(np.cross(rotation[2], rotation[1]))
            rotation[0] = np.cross(rotation[1], rotation[2])
        
        return self.rotate(rotation)
开发者ID:arafune,项目名称:pymatgen,代码行数:94,代码来源:tensors.py


注:本文中的pymatgen.symmetry.analyzer.SpacegroupAnalyzer.get_refined_structure方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。