本文整理汇总了Python中pymatgen.core.composition.Composition.from_formula方法的典型用法代码示例。如果您正苦于以下问题:Python Composition.from_formula方法的具体用法?Python Composition.from_formula怎么用?Python Composition.from_formula使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pymatgen.core.composition.Composition
的用法示例。
在下文中一共展示了Composition.from_formula方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_sub
# 需要导入模块: from pymatgen.core.composition import Composition [as 别名]
# 或者: from pymatgen.core.composition.Composition import from_formula [as 别名]
def test_sub(self):
self.assertEqual((self.comp[0]
- Composition.from_formula("Li2O")).formula,
"Li1 Fe2 P3 O11",
"Incorrect composition after addition!")
self.assertEqual((self.comp[0] - {"Fe": 2, "O": 3}).formula,
"Li3 P3 O9")
示例2: test_getmu_vertices_stability_phase
# 需要导入模块: from pymatgen.core.composition import Composition [as 别名]
# 或者: from pymatgen.core.composition.Composition import from_formula [as 别名]
def test_getmu_vertices_stability_phase(self):
results = self.analyzer.getmu_vertices_stability_phase(Composition.from_formula("LiFeO2"), Element("O"))
self.assertAlmostEqual(len(results), 6)
test_equality = False
for c in results:
if abs(c[Element("O")]+7.115) < 1e-2 and abs(c[Element("Fe")]+6.596) < 1e-2 and \
abs(c[Element("Li")]+3.931) < 1e-2:
test_equality = True
self.assertTrue(test_equality,"there is an expected vertex missing in the list")
示例3: test_indeterminate_formula
# 需要导入模块: from pymatgen.core.composition import Composition [as 别名]
# 或者: from pymatgen.core.composition.Composition import from_formula [as 别名]
def test_indeterminate_formula(self):
correct_formulas = [["Co1"], ["Co1", "C1 O1"], ["Co2 O3", "C1 O5"],
["N1 Ca1 Lu1", "U1 Al1 C1 N1"],
["N1 Ca1 Lu1", "U1 Al1 C1 N1"],
["Li1 Co1 P2 N1 O10", "Li1 P2 C1 N1 O11",
"Li1 Co1 Po8 N1 O2", "Li1 Po8 C1 N1 O3"],
["Co2 P4 O4", "Co2 Po4", "P4 C2 O6",
"Po4 C2 O2"], []]
for i, c in enumerate(correct_formulas):
self.assertEqual([Composition.from_formula(comp) for comp in c],
self.indeterminate_comp[i])
示例4: __str__
# 需要导入模块: from pymatgen.core.composition import Composition [as 别名]
# 或者: from pymatgen.core.composition.Composition import from_formula [as 别名]
def __str__(self):
reactant_str = []
product_str = []
for i in range(self._num_comp):
comp = self._all_comp[i]
coeff = self._coeffs[i]
red_comp = Composition.from_formula(comp.reduced_formula)
scale_factor = comp.num_atoms / red_comp.num_atoms
scaled_coeff = coeff * scale_factor
if scaled_coeff < 0:
reactant_str.append("{:.3f} {}".format(-scaled_coeff, comp.reduced_formula))
elif scaled_coeff > 0:
product_str.append("{:.3f} {}".format(scaled_coeff, comp.reduced_formula))
return " + ".join(reactant_str) + " -> " + " + ".join(product_str)
示例5: setUp
# 需要导入模块: from pymatgen.core.composition import Composition [as 别名]
# 或者: from pymatgen.core.composition.Composition import from_formula [as 别名]
def setUp(self):
self.comp = list()
self.comp.append(Composition.from_formula("Li3Fe2(PO4)3"))
self.comp.append(Composition.from_formula("Li3Fe(PO4)O"))
self.comp.append(Composition.from_formula("LiMn2O4"))
self.comp.append(Composition.from_formula("Li4O4"))
self.comp.append(Composition.from_formula("Li3Fe2Mo3O12"))
self.comp.append(Composition.from_formula("Li3Fe2((PO4)3(CO3)5)2"))
self.comp.append(Composition.from_formula("Li1.5Si0.5"))
self.comp.append(Composition.from_formula("ZnOH"))
self.indeterminate_comp = []
self.indeterminate_comp.append(
Composition.ranked_compositions_from_indeterminate_formula("Co1",
True)
)
self.indeterminate_comp.append(
Composition.ranked_compositions_from_indeterminate_formula("Co1",
False)
)
self.indeterminate_comp.append(
Composition.ranked_compositions_from_indeterminate_formula("co2o3")
)
self.indeterminate_comp.append(
Composition.ranked_compositions_from_indeterminate_formula("ncalu")
)
self.indeterminate_comp.append(
Composition.ranked_compositions_from_indeterminate_formula("calun")
)
self.indeterminate_comp.append(
Composition.ranked_compositions_from_indeterminate_formula(
"liCoo2n (pO4)2")
)
self.indeterminate_comp.append(
Composition.ranked_compositions_from_indeterminate_formula(
"(co)2 (PO)4")
)
self.indeterminate_comp.append(
Composition.ranked_compositions_from_indeterminate_formula("Fee3"))
示例6: test_getmu_range_stability_phase
# 需要导入模块: from pymatgen.core.composition import Composition [as 别名]
# 或者: from pymatgen.core.composition.Composition import from_formula [as 别名]
def test_getmu_range_stability_phase(self):
results = self.analyzer.getmu_range_stability_phase(Composition.from_formula("LiFeO2"),Element("O"))
self.assertAlmostEqual(results[Element("O")][1], -4.4501812249999997)
self.assertAlmostEqual(results[Element("Fe")][0], -6.5961470999999996)
self.assertAlmostEqual(results[Element("Li")][0], -3.6250022625000007)
示例7: from_steps
# 需要导入模块: from pymatgen.core.composition import Composition [as 别名]
# 或者: from pymatgen.core.composition.Composition import from_formula [as 别名]
def from_steps(step1, step2, normalization_els):
"""
Creates a ConversionVoltagePair from two steps in the element profile
from a PD analysis.
Args:
step1:
Starting step
step2:
Ending step
normalization_els:
Elements to normalize the reaction by. To ensure correct
capacities.
"""
working_ion_entry = step1["element_reference"]
working_ion = working_ion_entry.composition.elements[0].symbol
voltage = -step1["chempot"] + working_ion_entry.energy_per_atom
mAh = (step2["evolution"] - step1["evolution"]) \
* Charge(1, "e").to("C") * Time(1, "s").to("h") * AVOGADROS_CONST\
* 1000
licomp = Composition.from_formula(working_ion)
prev_rxn = step1["reaction"]
reactants = {comp: abs(prev_rxn.get_coeff(comp))
for comp in prev_rxn.products if comp != licomp}
curr_rxn = step2["reaction"]
products = {comp: abs(curr_rxn.get_coeff(comp))
for comp in curr_rxn.products if comp != licomp}
reactants[licomp] = (step2["evolution"] - step1["evolution"])
rxn = BalancedReaction(reactants, products)
for el, amt in normalization_els.items():
if rxn.get_el_amount(el) != 0:
rxn.normalize_to_element(el, amt)
break
prev_mass_dischg = sum([prev_rxn.all_comp[i].weight
* abs(prev_rxn.coeffs[i])
for i in xrange(len(prev_rxn.all_comp))]) / 2
vol_charge = sum([abs(prev_rxn.get_coeff(e.composition))
* e.structure.volume
for e in step1["entries"]
if e.composition.reduced_formula != working_ion])
mass_discharge = sum([curr_rxn.all_comp[i].weight
* abs(curr_rxn.coeffs[i])
for i in xrange(len(curr_rxn.all_comp))]) / 2
mass_charge = prev_mass_dischg
mass_discharge = mass_discharge
vol_discharge = sum([abs(curr_rxn.get_coeff(e.composition))
* e.structure.volume
for e in step2["entries"]
if e.composition.reduced_formula != working_ion])
totalcomp = Composition({})
for comp in prev_rxn.products:
if comp.reduced_formula != working_ion:
totalcomp += comp * abs(prev_rxn.get_coeff(comp))
frac_charge = totalcomp.get_atomic_fraction(Element(working_ion))
totalcomp = Composition({})
for comp in curr_rxn.products:
if comp.reduced_formula != working_ion:
totalcomp += comp * abs(curr_rxn.get_coeff(comp))
frac_discharge = totalcomp.get_atomic_fraction(Element(working_ion))
rxn = rxn
entries_charge = step2["entries"]
entries_discharge = step1["entries"]
return ConversionVoltagePair(rxn, voltage, mAh, vol_charge,
vol_discharge, mass_charge,
mass_discharge,
frac_charge, frac_discharge,
entries_charge, entries_discharge,
working_ion_entry)
示例8: __init__
# 需要导入模块: from pymatgen.core.composition import Composition [as 别名]
# 或者: from pymatgen.core.composition.Composition import from_formula [as 别名]
def __init__(self, struct):
"""
Args:
struct:
A pymatgen.core.structure.Structure object.
"""
block = CifFile.CifBlock()
latt = struct.lattice
comp = struct.composition
no_oxi_comp = Composition(comp.formula)
block["_symmetry_space_group_name_H-M"] = "P 1"
for cell_attr in ['a', 'b', 'c']:
block["_cell_length_" + cell_attr] = str(getattr(latt, cell_attr))
for cell_attr in ['alpha', 'beta', 'gamma']:
block["_cell_angle_" + cell_attr] = str(getattr(latt, cell_attr))
block["_chemical_name_systematic"] = "Generated by pymatgen"
block["_symmetry_Int_Tables_number"] = 1
block["_chemical_formula_structural"] = str(no_oxi_comp
.reduced_formula)
block["_chemical_formula_sum"] = str(no_oxi_comp.formula)
block["_cell_volume"] = str(latt.volume)
reduced_comp = Composition.from_formula(no_oxi_comp.reduced_formula)
el = no_oxi_comp.elements[0]
amt = comp[el]
fu = int(amt / reduced_comp[Element(el.symbol)])
block["_cell_formula_units_Z"] = str(fu)
block.AddCifItem(([["_symmetry_equiv_pos_site_id",
"_symmetry_equiv_pos_as_xyz"]],
[[["1"], ["x, y, z"]]]))
contains_oxidation = True
try:
symbol_to_oxinum = {str(el): float(el.oxi_state)
for el in comp.elements}
except AttributeError:
symbol_to_oxinum = {el.symbol: 0 for el in comp.elements}
contains_oxidation = False
if contains_oxidation:
block.AddCifItem(([["_atom_type_symbol",
"_atom_type_oxidation_number"]],
[[symbol_to_oxinum.keys(),
symbol_to_oxinum.values()]]))
atom_site_type_symbol = []
atom_site_symmetry_multiplicity = []
atom_site_fract_x = []
atom_site_fract_y = []
atom_site_fract_z = []
atom_site_attached_hydrogens = []
atom_site_B_iso_or_equiv = []
atom_site_label = []
atom_site_occupancy = []
count = 1
for site in struct:
for sp, occu in site.species_and_occu.items():
atom_site_type_symbol.append(str(sp))
atom_site_symmetry_multiplicity.append("1")
atom_site_fract_x.append("{0:f}".format(site.a))
atom_site_fract_y.append("{0:f}".format(site.b))
atom_site_fract_z.append("{0:f}".format(site.c))
atom_site_attached_hydrogens.append("0")
atom_site_B_iso_or_equiv.append(".")
atom_site_label.append("{}{}".format(sp.symbol, count))
atom_site_occupancy.append(str(occu))
count += 1
block["_atom_site_type_symbol"] = atom_site_type_symbol
block.AddToLoop("_atom_site_type_symbol",
{"_atom_site_label": atom_site_label})
block.AddToLoop("_atom_site_type_symbol",
{"_atom_site_symmetry_multiplicity":
atom_site_symmetry_multiplicity})
block.AddToLoop("_atom_site_type_symbol",
{"_atom_site_fract_x": atom_site_fract_x})
block.AddToLoop("_atom_site_type_symbol",
{"_atom_site_fract_y": atom_site_fract_y})
block.AddToLoop("_atom_site_type_symbol",
{"_atom_site_fract_z": atom_site_fract_z})
block.AddToLoop("_atom_site_type_symbol",
{"_atom_site_attached_hydrogens":
atom_site_attached_hydrogens})
block.AddToLoop("_atom_site_type_symbol",
{"_atom_site_B_iso_or_equiv":
atom_site_B_iso_or_equiv})
block.AddToLoop("_atom_site_type_symbol",
{"_atom_site_occupancy": atom_site_occupancy})
self._cf = CifFile.CifFile()
# AJ says: CIF Block names cannot be more than 75 characters or you
# get an Exception
self._cf[comp.reduced_formula[0:74]] = block
示例9: test_getmu_vertices_stability_phase
# 需要导入模块: from pymatgen.core.composition import Composition [as 别名]
# 或者: from pymatgen.core.composition.Composition import from_formula [as 别名]
def test_getmu_vertices_stability_phase(self):
results = self.analyzer.getmu_vertices_stability_phase(Composition.from_formula("LiFeO2"), Element("O"))
self.assertAlmostEqual(results[5][Element("O")], -7.11535414)
self.assertAlmostEqual(results[10][Element("Li")], -3.93161519)
self.assertAlmostEqual(results[0][Element("Fe")], -10.45183356)
示例10: get_element_profile
# 需要导入模块: from pymatgen.core.composition import Composition [as 别名]
# 或者: from pymatgen.core.composition.Composition import from_formula [as 别名]
def get_element_profile(self, element, comp, comp_tol=1e-5):
"""
Provides the element evolution data for a composition.
For example, can be used to analyze Li conversion voltages by varying
uLi and looking at the phases formed. Also can be used to analyze O2
evolution by varying uO2.
Args:
element:
An element. Must be in the phase diagram.
comp:
A Composition
comp_tol:
The tolerance to use when calculating decompositions. Phases
with amounts less than this tolerance are excluded. Defaults to
1e-5.
Returns:
Evolution data as a list of dictionaries of the following format:
[ {'chempot': -10.487582010000001, 'evolution': -2.0,
'reaction': Reaction Object], ...]
"""
if element not in self._pd.elements:
raise ValueError("get_transition_chempots can only be called with"
" elements in the phase diagram.")
chempots = self.get_transition_chempots(element)
stable_entries = self._pd.stable_entries
gccomp = Composition({el: amt for el, amt in comp.items()
if el != element})
elref = self._pd.el_refs[element]
elcomp = Composition.from_formula(element.symbol)
prev_decomp = []
evolution = []
def are_same_decomp(decomp1, decomp2):
for comp in decomp2:
if comp not in decomp1:
return False
return True
for c in chempots:
gcpd = GrandPotentialPhaseDiagram(
stable_entries, {element: c - 0.01}, self._pd.elements
)
analyzer = PDAnalyzer(gcpd)
gcdecomp = analyzer.get_decomposition(gccomp)
decomp = [gcentry.original_entry.composition
for gcentry, amt in gcdecomp.items()
if amt > comp_tol]
decomp_entries = [gcentry.original_entry
for gcentry, amt in gcdecomp.items()
if amt > comp_tol]
if not are_same_decomp(prev_decomp, decomp):
if elcomp not in decomp:
decomp.insert(0, elcomp)
rxn = Reaction([comp], decomp)
rxn.normalize_to(comp)
prev_decomp = decomp
amt = -rxn.coeffs[rxn.all_comp.index(elcomp)]
evolution.append({'chempot': c,
'evolution': amt,
'element_reference': elref,
'reaction': rxn, 'entries': decomp_entries})
return evolution