本文整理汇总了Python中pymatgen.analysis.reaction_calculator.Reaction.normalize_to方法的典型用法代码示例。如果您正苦于以下问题:Python Reaction.normalize_to方法的具体用法?Python Reaction.normalize_to怎么用?Python Reaction.normalize_to使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pymatgen.analysis.reaction_calculator.Reaction
的用法示例。
在下文中一共展示了Reaction.normalize_to方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_normalize_to
# 需要导入模块: from pymatgen.analysis.reaction_calculator import Reaction [as 别名]
# 或者: from pymatgen.analysis.reaction_calculator.Reaction import normalize_to [as 别名]
def test_normalize_to(self):
products = [Composition("Fe"), Composition("O2")]
reactants = [Composition("Fe2O3")]
rxn = Reaction(reactants, products)
rxn.normalize_to(Composition("Fe"), 3)
self.assertEqual(str(rxn), "1.500 Fe2O3 -> 3.000 Fe + 2.250 O2",
"Wrong reaction obtained!")
示例2: _get_reaction
# 需要导入模块: from pymatgen.analysis.reaction_calculator import Reaction [as 别名]
# 或者: from pymatgen.analysis.reaction_calculator.Reaction import normalize_to [as 别名]
def _get_reaction(self, x):
"""
Generates balanced reaction at mixing ratio x : (1-x) for
self.comp1 : self.comp2.
Args:
x (float): Mixing ratio x of reactants, a float between 0 and 1.
Returns:
Reaction object.
"""
mix_comp = self.comp1 * x + self.comp2 * (1-x)
decomp = self.pd.get_decomposition(mix_comp)
# Uses original composition for reactants.
reactant = list(set([self.c1_original, self.c2_original]))
if self.grand:
reactant += [Composition(e.symbol)
for e, v in self.pd.chempots.items()]
product = [Composition(k.name) for k, v in decomp.items()]
reaction = Reaction(reactant, product)
if np.isclose(x, 1):
reaction.normalize_to(self.c1_original, 1)
else:
reaction.normalize_to(self.c2_original, 1)
return reaction
示例3: transform_entries
# 需要导入模块: from pymatgen.analysis.reaction_calculator import Reaction [as 别名]
# 或者: from pymatgen.analysis.reaction_calculator.Reaction import normalize_to [as 别名]
def transform_entries(self, entries, terminal_compositions):
"""
Method to transform all entries to the composition coordinate in the
terminal compositions. If the entry does not fall within the space
defined by the terminal compositions, they are excluded. For example,
Li3PO4 is mapped into a Li2O:1.5, P2O5:0.5 composition. The terminal
compositions are represented by DummySpecies.
Args:
entries:
Sequence of all input entries
terminal_compositions:
Terminal compositions of phase space.
Returns:
Sequence of TransformedPDEntries falling within the phase space.
"""
new_entries = []
if self.normalize_terminals:
fractional_comp = [c.get_fractional_composition()
for c in terminal_compositions]
else:
fractional_comp = terminal_compositions
#Map terminal compositions to unique dummy species.
sp_mapping = collections.OrderedDict()
for i, comp in enumerate(fractional_comp):
sp_mapping[comp] = DummySpecie("X" + chr(102 + i))
for entry in entries:
try:
rxn = Reaction(fractional_comp, [entry.composition])
rxn.normalize_to(entry.composition)
#We only allow reactions that have positive amounts of
#reactants.
if all([rxn.get_coeff(comp) <= CompoundPhaseDiagram.amount_tol
for comp in fractional_comp]):
newcomp = {sp_mapping[comp]: -rxn.get_coeff(comp)
for comp in fractional_comp}
newcomp = {k: v for k, v in newcomp.items()
if v > CompoundPhaseDiagram.amount_tol}
transformed_entry = \
TransformedPDEntry(Composition(newcomp), entry)
new_entries.append(transformed_entry)
except ReactionError:
#If the reaction can't be balanced, the entry does not fall
#into the phase space. We ignore them.
pass
return new_entries, sp_mapping
示例4: get_element_profile
# 需要导入模块: from pymatgen.analysis.reaction_calculator import Reaction [as 别名]
# 或者: from pymatgen.analysis.reaction_calculator.Reaction import normalize_to [as 别名]
def get_element_profile(self, element, comp):
"""
Provides the element evolution data for a composition.
For example, can be used to analyze Li conversion voltages by varying uLi and looking at the phases formed.
Also can be used to analyze O2 evolution by varying uO2.
Args:
element:
An element. Must be in the phase diagram.
comp:
A Composition
Returns:
Evolution data as a list of dictionaries of the following format: [ {'chempot': -10.487582010000001, 'evolution': -2.0, 'reaction': Reaction Object], ...]
"""
if element not in self._pd.elements:
raise ValueError("get_transition_chempots can only be called with elements in the phase diagram.")
chempots = self.get_transition_chempots(element)
stable_entries = self._pd.stable_entries
gccomp = Composition({el:amt for el, amt in comp.items() if el != element})
elref = self._pd.el_refs[element]
elcomp = Composition.from_formula(element.symbol)
prev_decomp = [];
evolution = []
def are_same_decomp(decomp1, decomp2):
for comp in decomp2:
if comp not in decomp1:
return False
return True
for c in chempots:
gcpd = GrandPotentialPhaseDiagram(stable_entries, {element:c - 0.01}, self._pd.elements)
analyzer = PDAnalyzer(gcpd)
decomp = [gcentry.original_entry.composition for gcentry, amt in analyzer.get_decomposition(gccomp).items() if amt > 1e-5]
decomp_entries = [gcentry.original_entry for gcentry, amt in analyzer.get_decomposition(gccomp).items() if amt > 1e-5]
if not are_same_decomp(prev_decomp, decomp):
if elcomp not in decomp:
decomp.insert(0, elcomp)
rxn = Reaction([comp], decomp)
rxn.normalize_to(comp)
prev_decomp = decomp
evolution.append({'chempot':c, 'evolution' :-rxn.coeffs[rxn.all_comp.index(elcomp)], 'element_reference': elref, 'reaction':rxn, 'entries':decomp_entries})
return evolution
示例5: _get_reaction
# 需要导入模块: from pymatgen.analysis.reaction_calculator import Reaction [as 别名]
# 或者: from pymatgen.analysis.reaction_calculator.Reaction import normalize_to [as 别名]
def _get_reaction(self, x, normalize=False):
"""
Generates balanced reaction at mixing ratio x : (1-x) for
self.comp1 : self.comp2.
Args:
x (float): Mixing ratio x of reactants, a float between 0 and 1.
normalize (bool): Whether or not to normalize the sum of
coefficients of reactants to 1. For not normalized case,
use original reactant compositions in reaction for clarity.
Returns:
Reaction object.
"""
mix_comp = self.comp1 * x + self.comp2 * (1-x)
decomp = self.pd.get_decomposition(mix_comp)
if normalize:
reactant = list(set([self.c1, self.c2]))
else:
# Uses original composition for reactants.
reactant = list(set([self.c1_original, self.c2_original]))
if self.grand:
reactant += [Composition(e.symbol)
for e, v in self.pd.chempots.items()]
product = [Composition(k.name) for k, v in decomp.items()]
reaction = Reaction(reactant, product)
if normalize:
x = self._convert(x, self.factor1, self.factor2)
if x == 1:
reaction.normalize_to(self.c1, x)
else:
reaction.normalize_to(self.c2, 1-x)
return reaction
示例6: test_normalize_to
# 需要导入模块: from pymatgen.analysis.reaction_calculator import Reaction [as 别名]
# 或者: from pymatgen.analysis.reaction_calculator.Reaction import normalize_to [as 别名]
def test_normalize_to(self):
products = [Composition("Fe"), Composition("O2")]
reactants = [Composition("Fe2O3")]
rxn = Reaction(reactants, products)
rxn.normalize_to(Composition("Fe"), 3)
self.assertEqual(str(rxn), "1.5 Fe2O3 -> 3 Fe + 2.25 O2")