当前位置: 首页>>代码示例>>Python>>正文


Python FilterActs.max方法代码示例

本文整理汇总了Python中pylearn2.sandbox.cuda_convnet.filter_acts.FilterActs.max方法的典型用法代码示例。如果您正苦于以下问题:Python FilterActs.max方法的具体用法?Python FilterActs.max怎么用?Python FilterActs.max使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pylearn2.sandbox.cuda_convnet.filter_acts.FilterActs的用法示例。


在下文中一共展示了FilterActs.max方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_match_valid_conv

# 需要导入模块: from pylearn2.sandbox.cuda_convnet.filter_acts import FilterActs [as 别名]
# 或者: from pylearn2.sandbox.cuda_convnet.filter_acts.FilterActs import max [as 别名]
def test_match_valid_conv():

    # Tests that running FilterActs with no padding is the same as running
    # theano's conv2D in valid mode

    rng = np.random.RandomState([2012, 10, 9])

    batch_size = 5
    rows = 10
    cols = 9
    channels = 3
    filter_rows = 4
    filter_cols = filter_rows
    num_filters = 16

    images = shared(rng.uniform(-1.0, 1.0, (channels, rows, cols, batch_size)).astype("float32"), name="images")
    filters = shared(
        rng.uniform(-1.0, 1.0, (channels, filter_rows, filter_cols, num_filters)).astype("float32"), name="filters"
    )

    gpu_images = gpu_from_host(images)
    gpu_filters = gpu_from_host(filters)

    output = FilterActs()(gpu_images, gpu_filters)
    output = host_from_gpu(output)

    images_bc01 = images.dimshuffle(3, 0, 1, 2)
    filters_bc01 = filters.dimshuffle(3, 0, 1, 2)
    filters_bc01 = filters_bc01[:, :, ::-1, ::-1]

    output_conv2d = conv2d(images_bc01, filters_bc01, border_mode="valid")

    output_conv2d = output_conv2d.dimshuffle(1, 2, 3, 0)

    f = function([], [output, output_conv2d])

    output, output_conv2d = f()

    warnings.warn(
        """test_match_valid_conv success criterion is not very strict. Can we verify that this is OK?
                     One possibility is that theano is numerically unstable and Alex's code is better.
                     Probably theano CPU 64 bit is OK but it's worth checking the others."""
    )
    if np.abs(output - output_conv2d).max() > 2.4e-6:
        assert type(output) == type(output_conv2d)
        assert output.dtype == output_conv2d.dtype
        if output.shape != output_conv2d.shape:
            print "cuda-convnet shape: ", output.shape
            print "theano shape: ", output_conv2d.shape
            assert False
        err = np.abs(output - output_conv2d)
        print "absolute error range: ", (err.min(), err.max())
        print "mean absolute error: ", err.mean()
        print "cuda-convnet value range: ", (output.min(), output.max())
        print "theano value range: ", (output_conv2d.min(), output_conv2d.max())
        assert False
开发者ID:gbcolborne,项目名称:pylearn2,代码行数:58,代码来源:test_filter_acts.py

示例2: test_match_valid_conv_strided

# 需要导入模块: from pylearn2.sandbox.cuda_convnet.filter_acts import FilterActs [as 别名]
# 或者: from pylearn2.sandbox.cuda_convnet.filter_acts.FilterActs import max [as 别名]
def test_match_valid_conv_strided():

    # Tests that running FilterActs with stride is the same as running
    # theano's conv2D in valid mode and then downsampling

    rng = np.random.RandomState([2012,10,9])

    batch_size = 5
    rows = 9
    cols = 9
    channels = 3
    filter_rows = 3
    filter_cols = filter_rows
    stride = 3
    num_filters = 16

    images = shared(rng.uniform(-1., 1., (channels, rows, cols,
        batch_size)).astype('float32'), name='images')
    filters = shared(rng.uniform(-1., 1., (channels, filter_rows,
        filter_cols, num_filters)).astype('float32'), name='filters')

    gpu_images = gpu_from_host(images)
    gpu_filters = gpu_from_host(filters)

    output = FilterActs(stride=stride)(gpu_images, gpu_filters)
    output = host_from_gpu(output)

    images_bc01 = images.dimshuffle(3,0,1,2)
    filters_bc01 = filters.dimshuffle(3,0,1,2)
    filters_bc01 = filters_bc01[:,:,::-1,::-1]

    output_conv2d = conv2d(images_bc01, filters_bc01,
            border_mode='valid', subsample=(stride, stride))

    output_conv2d_orig = output_conv2d.dimshuffle(1,2,3,0)
    output_conv2d = output_conv2d_orig  # [:, ::stride, ::stride, :]
    f = function([], [output, output_conv2d, output_conv2d_orig])

    output, output_conv2d, output_conv2d_orig = f()

    warnings.warn("""test_match_valid_conv success criterion is not very strict. Can we verify that this is OK?
                     One possibility is that theano is numerically unstable and Alex's code is better.
                     Probably theano CPU 64 bit is OK but it's worth checking the others.""")
    if np.abs(output - output_conv2d).max() > 2.4e-6:
        assert type(output) == type(output_conv2d)
        assert output.dtype == output_conv2d.dtype
        if output.shape != output_conv2d.shape:
            print 'cuda-convnet shape: ',output.shape
            print 'theano shape: ',output_conv2d.shape
            assert False
        err = np.abs(output - output_conv2d)
        print 'absolute error range: ', (err.min(), err.max())
        print 'mean absolute error: ', err.mean()
        print 'cuda-convnet value range: ', (output.min(), output.max())
        print 'theano value range: ', (output_conv2d.min(), output_conv2d.max())
        assert False
开发者ID:Alienfeel,项目名称:pylearn2,代码行数:58,代码来源:test_filter_acts.py

示例3: test_match_valid_conv

# 需要导入模块: from pylearn2.sandbox.cuda_convnet.filter_acts import FilterActs [as 别名]
# 或者: from pylearn2.sandbox.cuda_convnet.filter_acts.FilterActs import max [as 别名]
def test_match_valid_conv():

    # Tests that running FilterActs with no padding is the same as running
    # theano's conv2D in valid mode

    rng = np.random.RandomState([2012,10,9])

    batch_size = 5
    rows = 10
    cols = 9
    channels = 3
    filter_rows = 4
    filter_cols = filter_rows
    num_filters = 16

    images = shared(rng.uniform(-1., 1., (channels, rows, cols,
        batch_size)).astype('float32'), name='images')
    filters = shared(rng.uniform(-1., 1., (channels, filter_rows,
        filter_cols, num_filters)).astype('float32'), name='filters')

    gpu_images = gpu_from_host(images)
    gpu_filters = gpu_from_host(filters)

    output = FilterActs()(gpu_images, gpu_filters)
    output = host_from_gpu(output)

    images_bc01 = images.dimshuffle(3,0,1,2)
    filters_bc01 = filters.dimshuffle(3,0,1,2)
    filters_bc01 = filters_bc01[:,:,::-1,::-1]

    output_conv2d = conv2d(images_bc01, filters_bc01,
            border_mode='valid')

    output_conv2d = output_conv2d.dimshuffle(1,2,3,0)

    try:
        f = function([], [output, output_conv2d])
    except:
        raise KnownFailureTest("cuda-convnet code depends on an unmerged theano feature.")

    output, output_conv2d = f()

    warnings.warn("test_match_valid_conv success criterion is not very strict. Can we verify that this is OK?")
    if np.abs(output - output_conv2d).max() > 2.4e-6:
        assert type(output) == type(output_conv2d)
        assert output.dtype == output_conv2d.dtype
        if output.shape != output_conv2d.shape:
            print 'cuda-convnet shape: ',output.shape
            print 'theano shape: ',output_conv2d.shape
            assert False
        err = np.abs(output - output_conv2d)
        print 'absolute error range: ', (err.min(), err.max())
        print 'mean absolute error: ', err.mean()
        print 'cuda-convnet value range: ', (output.min(), output.max())
        print 'theano value range: ', (output_conv2d.min(), output_conv2d.max())
        assert False
开发者ID:deigen,项目名称:pylearn,代码行数:58,代码来源:test_filter_acts.py

示例4: test_match_grad_valid_conv

# 需要导入模块: from pylearn2.sandbox.cuda_convnet.filter_acts import FilterActs [as 别名]
# 或者: from pylearn2.sandbox.cuda_convnet.filter_acts.FilterActs import max [as 别名]
def test_match_grad_valid_conv():

    # Tests that weightActs is the gradient of FilterActs
    # with respect to the weights.

    for partial_sum in [0, 1, 4]:
        rng = np.random.RandomState([2012, 10, 9])

        batch_size = 3
        rows = 7
        cols = 9
        channels = 8
        filter_rows = 4
        filter_cols = filter_rows
        num_filters = 16

        images = shared(rng.uniform(-1., 1., (channels, rows, cols,
                                              batch_size)).astype('float32'),
                        name='images')
        filters = rng.uniform(-1., 1.,
                              (channels, filter_rows,
                               filter_cols, num_filters)).astype('float32')
        filters = shared(filters, name='filters')

        gpu_images = gpu_from_host(images)
        gpu_filters = gpu_from_host(filters)

        output = FilterActs(partial_sum=partial_sum)(gpu_images, gpu_filters)
        output = host_from_gpu(output)

        images_bc01 = images.dimshuffle(3, 0, 1, 2)
        filters_bc01 = filters.dimshuffle(3, 0, 1, 2)
        filters_bc01 = filters_bc01[:, :, ::-1, ::-1]

        output_conv2d = conv2d(images_bc01, filters_bc01,
                               border_mode='valid')

        output_conv2d = output_conv2d.dimshuffle(1, 2, 3, 0)

        theano_rng = MRG_RandomStreams(2013 + 1 + 31)

        coeffs = theano_rng.normal(avg=0., std=1.,
                                   size=output_conv2d.shape, dtype='float32')

        cost_conv2d = (coeffs * output_conv2d).sum()

        weights_grad_conv2d = T.grad(cost_conv2d, filters)

        cost = (coeffs * output).sum()
        hid_acts_grad = T.grad(cost, output)

        weights_grad = WeightActs(partial_sum=partial_sum)(
            gpu_images,
            gpu_from_host(hid_acts_grad),
            as_tensor_variable((4, 4))
        )[0]
        weights_grad = host_from_gpu(weights_grad)

        f = function([], [output, output_conv2d, weights_grad,
                          weights_grad_conv2d])

        output, output_conv2d, weights_grad, weights_grad_conv2d = f()

        if np.abs(output - output_conv2d).max() > 8e-6:
            assert type(output) == type(output_conv2d)
            assert output.dtype == output_conv2d.dtype
            if output.shape != output_conv2d.shape:
                print('cuda-convnet shape: ', output.shape)
                print('theano shape: ', output_conv2d.shape)
                assert False
            err = np.abs(output - output_conv2d)
            print('absolute error range: ', (err.min(), err.max()))
            print('mean absolute error: ', err.mean())
            print('cuda-convnet value range: ', (output.min(), output.max()))
            print('theano value range: ', (output_conv2d.min(),
                                           output_conv2d.max()))
            assert False

        warnings.warn(
            "test_match_grad_valid_conv success criterion is not very strict."
            " Can we verify that this is OK? One possibility is that theano"
            " is numerically unstable and Alex's code is better. Probably"
            " theano CPU 64 bit is OK but it's worth checking the others.")

        if np.abs(weights_grad - weights_grad_conv2d).max() > 8.6e-6:
            if type(weights_grad) != type(weights_grad_conv2d):
                raise AssertionError("weights_grad is of type " +
                                     str(weights_grad))
            assert weights_grad.dtype == weights_grad_conv2d.dtype
            if weights_grad.shape != weights_grad_conv2d.shape:
                print('cuda-convnet shape: ', weights_grad.shape)
                print('theano shape: ', weights_grad_conv2d.shape)
                assert False
            err = np.abs(weights_grad - weights_grad_conv2d)
            print('absolute error range: ', (err.min(), err.max()))
            print('mean absolute error: ', err.mean())
            print('cuda-convnet value range: ', (weights_grad.min(),
                                                 weights_grad.max()))
            print('theano value range: ', (weights_grad_conv2d.min(),
                                           weights_grad_conv2d.max()))
#.........这里部分代码省略.........
开发者ID:123fengye741,项目名称:pylearn2,代码行数:103,代码来源:test_weight_acts.py


注:本文中的pylearn2.sandbox.cuda_convnet.filter_acts.FilterActs.max方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。