本文整理汇总了Python中pylearn2.models.model.Model类的典型用法代码示例。如果您正苦于以下问题:Python Model类的具体用法?Python Model怎么用?Python Model使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Model类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
def __init__(self, rbms=None, max_updates=1e6, flags={}):
Model.__init__(self)
Block.__init__(self)
self.jobman_channel = None
self.jobman_state = {}
self.validate_flags(flags)
self.register_names_to_del(['jobman_channel'])
# dump initialization parameters to object
for (k,v) in locals().iteritems():
if k!='self': setattr(self,k,v)
# validate that RBMs have the same number of units.
for (rbm1, rbm2) in zip(rbms[:-1], rbms[1:]):
assert rbm1.n_h == rbm2.n_v
assert rbm1.batch_size == rbm2.batch_size
#assert rbm1.flags['enable_centering']
#assert rbm2.flags['enable_centering']
self.rbms = rbms
self.depth = len(rbms)
self.rng = self.rbms[0].rng
# configure input-space (necessary evil)
self.input_space = VectorSpace(self.rbms[0].n_v)
self.output_space = VectorSpace(self.rbms[-1].n_h)
self.batches_seen = 0 # incremented on every batch
self.examples_seen = 0 # incremented on every training example
self.batch_size = self.rbms[0].batch_size
self.cpu_time = 0
self.init_train_sequence()
self.do_theano()
示例2: __init__
def __init__(self, k, nvis, convergence_th=1e-6, max_iter=None, verbose=False):
"""
Parameters in conf:
:type k: int
:param k: number of clusters.
:type convergence_th: float
:param convergence_th: threshold of distance to clusters under which
kmeans stops iterating.
:type max_iter: int
:param max_iter: maximum number of iterations. Defaults to infinity.
"""
Block.__init__(self)
Model.__init__(self)
self.input_space = VectorSpace(nvis)
self.k = k
self.convergence_th = convergence_th
if max_iter:
if max_iter < 0:
raise Exception('KMeans init: max_iter should be positive.')
self.max_iter = max_iter
else:
self.max_iter = float('inf')
self.verbose = verbose
示例3: __init__
def __init__(self, n_vis_units, n_hidden_units):
Model.__init__(self)
self._W = sharedX(np.random.uniform(size=(n_vis_units, n_hidden_units)), 'W')
self._b = sharedX(np.zeros(n_hidden_units), 'b')
self._b_reconstruction = sharedX(np.zeros(n_vis_units), 'b_reconstruction')
self.input_space = VectorSpace(dim=n_vis_units)
示例4: __init__
def __init__(self, C = 1.0,
kernel = 'rbf',
gamma = 1.0,
cache_size = 1024,
params=None,
verbose = False):
Model.__init__(self)
self.C= C
self.gamma = gamma
self.cache_size = cache_size
self.verbose = verbose
self.kernel = kernel
# self.input_space = VectorSpace()
if params is None:
# create dummies
self.bias = 0
self.alpha = numpy.zeros(1)
else:
self.bias = params[0]
self.alpha = params[1]
# this way we query predictions without saving anything
self.classifier = None
print self
示例5: __init__
def __init__(self, n_vis_units, n_classes):
Model.__init__(self)
self._W = sharedX(np.random.uniform(size=(n_vis_units, n_classes)).astype(dtype=np.float32), 'W')
self._b = sharedX(np.zeros(n_classes, dtype=np.float32), 'b')
# base class overrides
self.input_space = VectorSpace(dim=n_vis_units)
self.output_space = VectorSpace(dim=n_classes)
示例6: __init__
def __init__(self, n_vis, n_hid, sigma=0.4, W=None, h_bias=None, v_bias=None, numpy_rng=None,theano_rng=None):
""" """
Model.__init__(self) # self.names_to_del = set(); self._test_batch_size = 2
Block.__init__(self) # self.fn = None; self.cpu_only = False
self.n_vis = n_vis
self.n_hid = n_hid
self.sigma = sigma
self.coeff = 1. / (self.sigma**2) #coefficient
self.input_space = VectorSpace(dim=self.n_vis) # add input_space
self.output_space = VectorSpace(dim=self.n_hid) # add output_space
if numpy_rng is None:
# create a number generator
numpy_rng = numpy.random.RandomState(seed=19920130)
self.numpy_rng = numpy_rng
if theano_rng is None:
theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))
self.theano_rng = theano_rng
if W is None:
init_W = numpy.asarray(numpy_rng.uniform(
low=-4 * numpy.sqrt(6. / (n_hid + n_vis)),
high=4 * numpy.sqrt(6. / (n_hid + n_vis)),
size=(n_vis, n_hid)),
dtype=theano.config.floatX)
# theano shared variables for weights and biases
W = theano.shared(value=init_W, name='W', borrow=True)
else:
assert isinstance(W, theano.tensor.sharedvar.TensorSharedVariable)
assert W.get_value().ndim == 2
if h_bias is None:
# create shared variable for hidden units bias
h_bias = theano.shared(value=numpy.zeros(n_hid, dtype=theano.config.floatX), name='h_bias', borrow=True)
else:
assert isinstance(h_bias, theano.tensor.sharedvar.TensorSharedVariable)
assert h_bias.get_value().ndim == 1
if v_bias is None:
# create shared variable for visible units bias
v_bias = theano.shared(value=numpy.zeros(n_vis, dtype=theano.config.floatX), name='v_bias', borrow=True)
else:
assert isinstance(W, theano.tensor.sharedvar.TensorSharedVariable)
assert v_bias.get_value().ndim == 1
self.W = W
self.h_bias = h_bias
self.v_bias = v_bias
self._params = [self.W, self.h_bias, self.v_bias]
示例7: __init__
def __init__(self, n_vis, n_hid, corruptor=None, W=None, b_enc=None, b_dec=None, numpy_rng=None, dec_f=True, extra_cost=None,theano_rng=None):
"""构造函数
dec_f: 解码单元是否包含非线性函数
extra_cost:除了基本的MSE Cost和CE Cost之外的代价函数其他惩罚项,例如稀疏惩罚,weight decay等等.
用于self.get_default_cost()方法中. 这样依赖需要在模型初始化之前加入希望添加的惩罚项即可.
"""
Model.__init__(self) # self.names_to_del = set(); self._test_batch_size = 2
Block.__init__(self) # self.fn = None; self.cpu_only = False
self.n_vis = n_vis
self.n_hid = n_hid
self.extra_cost = extra_cost
self.dec_f = dec_f
if corruptor is not None:
self.corruptor = corruptor
self.input_space = VectorSpace(dim=self.n_vis) # add input_space
self.output_space = VectorSpace(dim=self.n_hid) # add output_space
if numpy_rng is None:
# create a number generator
numpy_rng = numpy.random.RandomState(seed=19900418)
self.numpy_rng = numpy_rng
if theano_rng is None:
theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))
self.theano_rng = theano_rng
if W is None:
init_W = numpy.asarray(numpy_rng.uniform(
low= -4 * numpy.sqrt(6. / (n_hid + n_vis + 1.)),
high= 4 * numpy.sqrt(6. / (n_hid + n_vis + 1.)),
size=(n_vis, n_hid)),
dtype=theano.config.floatX)
# theano shared variables for weights and biases
W = theano.shared(value=init_W, name='W', borrow=True)
if b_enc is None:
# create shared variable for hidden units bias
b_enc = theano.shared(value=numpy.zeros(n_hid, dtype=theano.config.floatX), name='b_enc', borrow=True)
if b_dec is None:
# create shared variable for visible units bias
b_dec = theano.shared(value=numpy.zeros(n_vis, dtype=theano.config.floatX), name='b_dec', borrow=True)
self.W = W
self.b_enc = b_enc
self.b_dec = b_dec
self._params = [self.W, self.b_enc, self.b_dec]
示例8: __init__
def __init__(self, k, nvis, convergence_th=1e-6, max_iter=None, verbose=False):
Block.__init__(self)
Model.__init__(self)
self.input_space = VectorSpace(nvis)
self.k = k
self.convergence_th = convergence_th
if max_iter:
if max_iter < 0:
raise Exception("KMeans init: max_iter should be positive.")
self.max_iter = max_iter
else:
self.max_iter = float("inf")
self.verbose = verbose
示例9: __init__
def __init__(self, n_vis, n_hid, W=None, h_bias=None, v_bias=None, numpy_rng=None,theano_rng=None):
Model.__init__(self) # self.names_to_del = set(); self._test_batch_size = 2
Block.__init__(self) # self.fn = None; self.cpu_only = False
self.n_vis = n_vis
self.n_hid = n_hid
self.input_space = VectorSpace(dim=self.n_vis) # add input_space
self.output_space = VectorSpace(dim=self.n_hid) # add output_space
if numpy_rng is None:
# create a number generator
numpy_rng = numpy.random.RandomState(seed=19900418)
self.numpy_rng = numpy_rng
if theano_rng is None:
theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))
self.theano_rng = theano_rng
if W is None:
init_W = numpy.asarray(numpy_rng.uniform(
low=-4 * numpy.sqrt(6. / (n_hid + n_vis)),
high=4 * numpy.sqrt(6. / (n_hid + n_vis)),
size=(n_vis, n_hid)),
dtype=theano.config.floatX)
# theano shared variables for weights and biases
W = theano.shared(value=init_W, name='W', borrow=True)
if h_bias is None:
# create shared variable for hidden units bias
h_bias = theano.shared(value=numpy.zeros(n_hid, dtype=theano.config.floatX), name='h_bias', borrow=True)
if v_bias is None:
# create shared variable for visible units bias
v_bias = theano.shared(value=numpy.zeros(n_vis, dtype=theano.config.floatX), name='v_bias', borrow=True)
self.W = W
self.h_bias = h_bias
self.v_bias = v_bias
self._params = [self.W, self.h_bias, self.v_bias]
示例10: __init__
def __init__(self, nvis, nhid, irange=0.5, rng=None, init_bias_hid=0.0):
"""
Construct an RBM object.
Parameters
----------
nvis : int
Number of visible units in the model.
nhid : int
Number of hidden units in the model.
irange : float, optional
The size of the initial interval around 0 for weights.
rng : RandomState object or seed
NumPy RandomState object to use when initializing parameters
of the model, or (integer) seed to use to create one.
"""
Model.__init__(self)
if rng is None:
# TODO: global rng configuration stuff.
rng = numpy.random.RandomState(1001)
self.visbias = sharedX(
numpy.zeros(nvis),
name='vb',
borrow=True
)
self.hidbias = sharedX(
numpy.zeros(nhid) + init_bias_hid,
name='hb',
borrow=True
)
self.weights = sharedX(
rng.uniform(-irange, irange, (nvis, nhid)),
name='W',
borrow=True
)
self.__dict__.update(nhid=nhid, nvis=nvis)
self._params = [self.visbias, self.hidbias, self.weights]
示例11: __init__
def __init__(self,
numpy_rng = None, theano_rng = None,
n_h=99, n_v=100, init_from=None,
min_beta=0.9, num_beta=20, gamma=10, cratio=1, cdelay=0,
neg_sample_steps=1,
lr_spec=None, lr_mults = {},
iscales={}, clip_min={}, clip_max={},
l1 = {}, l2 = {},
sp_weight={}, sp_targ={},
batch_size = 13,
compile=True, debug=False, seed=1241234,
flags = {},
max_updates = 5e5, **kwargs):
"""
:param n_h: number of h-hidden units
:param n_v: number of visible units
:param iscales: optional dictionary containing initialization scale for each parameter
:param neg_sample_steps: number of sampling updates to perform in negative phase.
:param l1: hyper-parameter controlling amount of L1 regularization
:param l2: hyper-parameter controlling amount of L2 regularization
:param batch_size: size of positive and negative phase minibatch
:param compile: compile sampling and learning functions
:param seed: seed used to initialize numpy and theano RNGs.
"""
Model.__init__(self)
Block.__init__(self)
assert lr_spec is not None
for k in ['h']: assert k in sp_weight.keys()
for k in ['h']: assert k in sp_targ.keys()
self.validate_flags(flags)
self.jobman_channel = None
self.jobman_state = {}
self.register_names_to_del(['jobman_channel'])
### make sure all parameters are floatX ###
for (k,v) in l1.iteritems(): l1[k] = npy_floatX(v)
for (k,v) in l2.iteritems(): l2[k] = npy_floatX(v)
for (k,v) in sp_weight.iteritems(): sp_weight[k] = npy_floatX(v)
for (k,v) in sp_targ.iteritems(): sp_targ[k] = npy_floatX(v)
for (k,v) in clip_min.iteritems(): clip_min[k] = npy_floatX(v)
for (k,v) in clip_max.iteritems(): clip_max[k] = npy_floatX(v)
# dump initialization parameters to object
for (k,v) in locals().iteritems():
if k!='self': setattr(self,k,v)
# allocate random number generators
self.rng = numpy.random.RandomState(seed) if numpy_rng is None else numpy_rng
self.theano_rng = RandomStreams(self.rng.randint(2**30)) if theano_rng is None else theano_rng
############### ALLOCATE PARAMETERS #################
# allocate symbolic variable for input
self.input = T.matrix('input')
self.init_parameters()
self.init_chains()
# learning rate, with deferred 1./t annealing
self.iter = sharedX(0.0, name='iter')
if lr_spec['type'] == 'anneal':
num = lr_spec['init'] * lr_spec['start']
denum = T.maximum(lr_spec['start'], lr_spec['slope'] * self.iter)
self.lr = T.maximum(lr_spec['floor'], num/denum)
elif lr_spec['type'] == '1_t':
self.lr = npy_floatX(lr_spec['num']) / (self.iter + npy_floatX(lr_spec['denum']))
elif lr_spec['type'] == 'linear':
lr_start = npy_floatX(lr_spec['start'])
lr_end = npy_floatX(lr_spec['end'])
self.lr = lr_start + self.iter * (lr_end - lr_start) / npy_floatX(self.max_updates)
elif lr_spec['type'] == 'constant':
self.lr = sharedX(lr_spec['value'], name='lr')
else:
raise ValueError('Incorrect value for lr_spec[type]')
# configure input-space (new pylearn2 feature?)
self.input_space = VectorSpace(n_v)
self.output_space = VectorSpace(n_h)
self.batches_seen = 0 # incremented on every batch
self.examples_seen = 0 # incremented on every training example
self.logz = sharedX(0.0, name='logz')
self.cpu_time = 0
self.error_record = []
if compile: self.do_theano()
if init_from:
raise NotImplementedError()
示例12: __init__
def __init__(self, input_space, output_channels, pool_shape, batch_size=None, detector_axes=('b', 'c', 0, 1),
kernel_shape=(2,2), kernel_stride=(1, 1), border_mode='valid',
transformer=None, h_bias=None, v_bias=None, numpy_rng=None,theano_rng=None):
"""
vis_space: Conv2DSpace
transformer: pylearn2.linear.Conv2D instance
h_bias: vector, 大小等于输出的feature maps数,每个分量对应一个feature map
v_bias: vector, 大小等于输入的feature maps数,每个分量对应一个feature map
pool_shape:
pool_stride: 根据Honglak Lee的原文,pool区域无交叠,于是要求pool_stride=pool_shape,因此暂时不单独设置pool_stride参数
需要注意,对于卷积RBM,其隐层对应于卷积后的detector_layer,而输出则对应与pool_layer,因此相对于普通RBM只有输入和输出两个space,CRBM有三个space
"""
Model.__init__(self) # self.names_to_del = set(); self._test_batch_size = 2
Block.__init__(self) # self.fn = None; self.cpu_only = False
self.kernel_shape = kernel_shape
self.kernel_stride = kernel_stride
self.pool_shape = pool_shape
self.pool_stride = pool_shape
self.border_mode = border_mode
self.batch_size = batch_size
self.force_batch_size = batch_size
input_shape = input_space.shape
input_channels = input_space.num_channels
if self.border_mode == 'valid':
detector_shape = [(input_shape[0] - kernel_shape[0])/int(kernel_stride[0]) + 1, (input_shape[1] - kernel_shape[1])/kernel_stride[1] + 1]
elif self.border_mode == 'full':
detector_shape = [(input_shape[0] + kernel_shape[0])/int(kernel_stride[0]) - 1, (input_shape[1] + kernel_shape[1])/kernel_stride[1] - 1]
assert isinstance(input_space, Conv2DSpace)
self.input_space = input_space # add input_space
self.detector_space = Conv2DSpace(shape=detector_shape, num_channels=output_channels, axes=detector_axes) # add detector_space
#当前只考虑detector layer的feature map可以被pool_shape无交叠完整分割的情况
#今后需要补充:边缘补齐的情况
output_shape = (detector_shape[0] / pool_shape[0], detector_shape[1] / pool_shape[1])
self.output_space = Conv2DSpace(shape=output_shape, num_channels=output_channels, axes=detector_axes) # add output_space
self.n_vis = numpy.prod(input_space.shape) * input_space.num_channels
self.n_hid = detector_shape[0] * detector_shape[1] * output_channels
if numpy_rng is None:
# create a number generator
numpy_rng = numpy.random.RandomState(seed=19900418)
self.numpy_rng = numpy_rng
if theano_rng is None:
theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))
self.theano_rng = theano_rng
if transformer is None:
irange = 4 * numpy.sqrt(6. / (self.n_hid + self.n_vis))
transformer = make_random_conv2D(irange=irange, input_space=self.input_space, output_space=self.detector_space,
kernel_shape = self.kernel_shape, batch_size = self.batch_size,
subsample = kernel_stride,border_mode = self.border_mode, rng=self.numpy_rng)
else:
assert isinstance(transformer, Conv2D)
if h_bias is None:
# create shared variable for hidden units bias
h_bias = theano.shared(value=numpy.zeros(self.detector_space.num_channels, dtype=theano.config.floatX), name='h_bias', borrow=True)
if v_bias is None:
# create shared variable for visible units bias
v_bias = theano.shared(value=numpy.zeros(self.input_space.num_channels, dtype=theano.config.floatX), name='v_bias', borrow=True)
self.transformer = transformer
self.h_bias = h_bias
self.v_bias = v_bias
self._params = safe_union(self.transformer.get_params(), [self.h_bias, self.v_bias])
示例13: __init__
def __init__(self, model_type=None, alpha=0.2,
n_vis_img=None, n_vis_txt=None, n_hid_img=None, n_hid_txt=None, corruptor_img=None, corruptor_txt=None,
W_img=None, W_txt=None, b_enc_img=None, b_enc_txt=None, b_dec_img=None, b_dec_txt=None, dec_f_img=True, dec_f_txt=True,
img_AE=None, txt_AE=None, numpy_rng=None, theano_rng=None):
"""
model_type: String, 选择模型类型,目的是为了控制get_default_cost()方法找到所希望的训练代价
可选参数: 'Combine', 'CrossModal', 'FullModal'
param: alpha, 标准代价和关联代价的权重稀疏,alpha越大则标准代价在总的代价函数中的比重越大
param: img_AE, 图像端用AE
param: txt_AE, 文本端用AE
"""
Model.__init__(self) # self.names_to_del = set(); self._test_batch_size = 2
Block.__init__(self) # self.fn = None; self.cpu_only = False
assert model_type in ['Combine', 'CrossModal', 'FullModal']
self.model_type = model_type
self.alpha = alpha
if numpy_rng is None:
# create a number generator
numpy_rng = numpy.random.RandomState(seed=19900418)
self.numpy_rng = numpy_rng
if theano_rng is None:
theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))
self.theano_rng = theano_rng
#两个AE共用的部分只有随机数发生器
if img_AE is None:
assert n_vis_img is not None
assert n_hid_img is not None
img_AE = MyAutoEncoder(n_vis=n_vis_img, n_hid=n_hid_img, corruptor=corruptor_img,
W=W_img, b_enc=b_enc_img, b_dec=b_dec_img, dec_f=dec_f_img,
numpy_rng=self.numpy_rng, theano_rng=self.theano_rng)
if txt_AE is None:
assert n_vis_txt is not None
assert n_hid_txt is not None
txt_AE = MyAutoEncoder(n_vis=n_vis_txt, n_hid=n_hid_txt, corruptor=corruptor_txt,
W=W_txt, b_enc=b_enc_txt, b_dec=b_dec_txt, dec_f=dec_f_txt,
numpy_rng=self.numpy_rng, theano_rng=self.theano_rng)
assert img_AE.n_hid == txt_AE.n_hid #目前的模型只能接受两端具有相同维度的编码空间
self.img_AE = img_AE
self.txt_AE = txt_AE
self.W_img = img_AE.W #not used
self.W_txt = txt_AE.W #not used
self.b_enc_img = img_AE.b_enc #not used
self.b_dec_img = img_AE.b_dec #not used
self.b_enc_txt = txt_AE.b_enc #not used
self.b_dec_txt = txt_AE.b_dec #not used
self.n_vis_img = self.img_AE.n_vis
self.n_vis_txt = self.txt_AE.n_vis
self.n_hid_img = self.img_AE.n_hid
self.n_hid_txt = self.txt_AE.n_hid
self.n_vis = self.img_AE.n_vis + self.txt_AE.n_vis
self.n_hid = self.img_AE.n_hid + self.txt_AE.n_hid
self.input_space = VectorSpace(dim=self.n_vis) # add input_space
self.output_space = VectorSpace(dim=self.n_hid) # add output_space
#init_W = numpy.concatenate([self.img_AE.W, self.txt_AE_W], axis=1)
#self.W = theano.shared(value=init_W, name='W', borrow=True)
#参数顺序:图像权值矩阵, 图像编码偏置,图像解码偏置,文本权值矩阵,文本编码偏置,文本解码偏置
self._params = [self.img_AE.W, self.img_AE.b_enc, self.img_AE.b_dec, self.txt_AE.W, self.txt_AE.b_enc, self.txt_AE.b_dec]
示例14: __init__
def __init__(self, numpy_rng = None, theano_rng = None,
n_h=100, bw_s=1, n_v=100, init_from=None,
neg_sample_steps=1,
lr_spec=None, lr_timestamp=None, lr_mults = {},
iscales={}, clip_min={}, clip_max={}, truncation_bound={},
l1 = {}, l2 = {}, orth_lambda=0.,
var_param_alpha='exp', var_param_lambd='linear',
sp_type='kl', sp_weight={}, sp_targ={},
batch_size = 13,
compile=True,
debug=False,
seed=1241234,
my_save_path=None, save_at=None, save_every=None,
flags = {},
max_updates = 5e5):
"""
:param n_h: number of h-hidden units
:param n_v: number of visible units
:param iscales: optional dictionary containing initialization scale for each parameter
:param neg_sample_steps: number of sampling updates to perform in negative phase.
:param l1: hyper-parameter controlling amount of L1 regularization
:param l2: hyper-parameter controlling amount of L2 regularization
:param batch_size: size of positive and negative phase minibatch
:param compile: compile sampling and learning functions
:param seed: seed used to initialize numpy and theano RNGs.
"""
Model.__init__(self)
Block.__init__(self)
assert lr_spec is not None
for k in ['Wv', 'hbias']: assert k in iscales.keys()
iscales.setdefault('mu', 1.)
iscales.setdefault('alpha', 0.)
iscales.setdefault('lambd', 0.)
for k in ['h']: assert k in sp_weight.keys()
for k in ['h']: assert k in sp_targ.keys()
self.validate_flags(flags)
self.jobman_channel = None
self.jobman_state = {}
self.register_names_to_del(['jobman_channel'])
### make sure all parameters are floatX ###
for (k,v) in l1.iteritems(): l1[k] = npy_floatX(v)
for (k,v) in l2.iteritems(): l2[k] = npy_floatX(v)
for (k,v) in sp_weight.iteritems(): sp_weight[k] = npy_floatX(v)
for (k,v) in sp_targ.iteritems(): sp_targ[k] = npy_floatX(v)
for (k,v) in clip_min.iteritems(): clip_min[k] = npy_floatX(v)
for (k,v) in clip_max.iteritems(): clip_max[k] = npy_floatX(v)
# dump initialization parameters to object
for (k,v) in locals().iteritems():
if k!='self': setattr(self,k,v)
# allocate random number generators
self.rng = numpy.random.RandomState(seed) if numpy_rng is None else numpy_rng
self.theano_rng = RandomStreams(self.rng.randint(2**30)) if theano_rng is None else theano_rng
# allocate symbolic variable for input
self.input = T.matrix('input')
self.init_parameters()
self.init_chains()
# learning rate, with deferred 1./t annealing
self.iter = sharedX(0.0, name='iter')
if lr_spec['type'] == 'anneal':
num = lr_spec['init'] * lr_spec['start']
denum = T.maximum(lr_spec['start'], lr_spec['slope'] * self.iter)
self.lr = T.maximum(lr_spec['floor'], num/denum)
elif lr_spec['type'] == 'linear':
lr_start = npy_floatX(lr_spec['start'])
lr_end = npy_floatX(lr_spec['end'])
self.lr = lr_start + self.iter * (lr_end - lr_start) / npy_floatX(self.max_updates)
else:
raise ValueError('Incorrect value for lr_spec[type]')
# configure input-space (new pylearn2 feature?)
self.input_space = VectorSpace(n_v)
self.output_space = VectorSpace(n_h)
self.batches_seen = 0 # incremented on every batch
self.examples_seen = 0 # incremented on every training example
self.force_batch_size = batch_size # force minibatch size
self.error_record = []
if compile: self.do_theano()
#### load layer 1 parameters from file ####
if init_from:
self.load_params(init_from)
示例15: __init__
def __init__(self,
input=None, Wv=None, vbias=None, hbias=None,
numpy_rng = None, theano_rng = None,
n_h=100, bw_s=1, n_v=100, init_from=None,
neg_sample_steps=1,
lr=None, lr_timestamp=None, lr_mults = {},
iscales={}, clip_min={}, clip_max={}, l1 = {}, l2 = {},
sp_type='kl', sp_weight={}, sp_targ={},
batch_size = 13,
compile=True,
debug=False,
seed=1241234,
my_save_path=None, save_at=None, save_every=None,
flags = {},
max_updates = 5e5):
"""
:param n_h: number of h-hidden units
:param n_v: number of visible units
:param iscales: optional dictionary containing initialization scale for each parameter
:param neg_sample_steps: number of sampling updates to perform in negative phase.
:param l1: hyper-parameter controlling amount of L1 regularization
:param l2: hyper-parameter controlling amount of L2 regularization
:param batch_size: size of positive and negative phase minibatch
:param compile: compile sampling and learning functions
:param seed: seed used to initialize numpy and theano RNGs.
"""
Model.__init__(self)
Block.__init__(self)
assert lr is not None
for k in ['Wv', 'vbias', 'hbias']: assert k in iscales.keys()
iscales.setdefault('mu', 1.)
iscales.setdefault('alpha', 0.)
for k in ['h']: assert k in sp_weight.keys()
for k in ['h']: assert k in sp_targ.keys()
self.jobman_channel = None
self.jobman_state = {}
self.register_names_to_del(['jobman_channel'])
### make sure all parameters are floatX ###
for (k,v) in l1.iteritems(): l1[k] = npy_floatX(v)
for (k,v) in l2.iteritems(): l2[k] = npy_floatX(v)
for (k,v) in sp_weight.iteritems(): sp_weight[k] = npy_floatX(v)
for (k,v) in sp_targ.iteritems(): sp_targ[k] = npy_floatX(v)
for (k,v) in clip_min.iteritems(): clip_min[k] = npy_floatX(v)
for (k,v) in clip_max.iteritems(): clip_max[k] = npy_floatX(v)
# dump initialization parameters to object
for (k,v) in locals().iteritems():
if k!='self': setattr(self,k,v)
# allocate random number generators
self.rng = numpy.random.RandomState(seed) if numpy_rng is None else numpy_rng
self.theano_rng = RandomStreams(self.rng.randint(2**30)) if theano_rng is None else theano_rng
############### ALLOCATE PARAMETERS #################
self.n_s = self.n_h * self.bw_s
if Wv is None:
wv_val = self.rng.randn(n_v, self.n_s) * iscales['Wv']
self.Wv = sharedX(wv_val, name='Wv')
else:
self.Wv = Wv
self.Wh = numpy.zeros((self.n_s, self.n_h), dtype=floatX)
for i in xrange(self.n_h):
self.Wh[i*bw_s:(i+1)*bw_s, i] = 1.
# allocate shared variables for bias parameters
if vbias is None:
self.vbias = sharedX(iscales['vbias'] * numpy.ones(n_v), name='vbias')
else:
self.vbias = vbias
# allocate shared variables for bias parameters
if hbias is None:
self.hbias = sharedX(iscales['hbias'] * numpy.ones(n_h), name='hbias')
else:
self.hbias = hbias
# mean (mu) and precision (alpha) parameters on s
self.mu = sharedX(iscales['mu'] * numpy.ones(self.n_s), name='mu')
self.alpha = sharedX(iscales['alpha'] * numpy.ones(self.n_s), name='alpha')
self.alpha_prec = T.exp(self.alpha)
#### load layer 1 parameters from file ####
if init_from:
self.load_params(init_from)
# allocate shared variable for persistent chain
self.neg_v = sharedX(self.rng.rand(batch_size, n_v), name='neg_v')
self.neg_ev = sharedX(self.rng.rand(batch_size, n_v), name='neg_ev')
self.neg_s = sharedX(self.rng.rand(batch_size, self.n_s), name='neg_s')
self.neg_h = sharedX(self.rng.rand(batch_size, n_h), name='neg_h')
# moving average values for sparsity
self.sp_pos_v = sharedX(self.rng.rand(1,self.n_v), name='sp_pos_v')
self.sp_pos_h = sharedX(self.rng.rand(1,self.n_h), name='sp_pog_h')
# learning rate, with deferred 1./t annealing
#.........这里部分代码省略.........