本文整理汇总了Python中pylada.vasp.Vasp.nbands方法的典型用法代码示例。如果您正苦于以下问题:Python Vasp.nbands方法的具体用法?Python Vasp.nbands怎么用?Python Vasp.nbands使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pylada.vasp.Vasp
的用法示例。
在下文中一共展示了Vasp.nbands方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_typed
# 需要导入模块: from pylada.vasp import Vasp [as 别名]
# 或者: from pylada.vasp.Vasp import nbands [as 别名]
def test_typed():
from pylada.vasp import Vasp
from pylada.error import ValueError
a = Vasp()
assert a.nbands is None
assert a._input['nbands'].keyword == 'nbands'
assert a._input['nbands'].output_map() is None
a.nbands = 50
assert a.nbands == 50
assert 'nbands' in a._input['nbands'].output_map()
assert a._input['nbands'].output_map()['nbands'] == str(a.nbands)
a.nbands = '51'
assert a.nbands == 51
assert 'nbands' in a._input['nbands'].output_map()
assert a._input['nbands'].output_map()['nbands'] == str(a.nbands)
a.nbands = None
assert a.nbands is None
assert a._input['nbands'].output_map() is None
try: a.nbands = 'a'
except ValueError: pass
else: raise Exception()
assert a.smearings is None
assert a._input['smearings'].keyword == 'smearings'
assert a._input['smearings'].output_map() is None
a.smearings = [1.5, 1.0, 0.5]
assert len(a.smearings) == 3
assert all(abs(i-v) < 1e-8 for i, v in zip(a.smearings, [1.5, 1.0, 0.5]))
assert 'smearings' in a._input['smearings'].output_map()
assert all(abs(float(i)-v) < 1e-8 for i, v in zip(a._input['smearings'].output_map()['smearings'].split(), [1.5, 1.0, 0.5]))
a.smearings = ['1.2', '0.2']
assert len(a.smearings) == 2
assert all(abs(i-v) < 1e-8 for i, v in zip(a.smearings, [1.2, 0.2]))
assert 'smearings' in a._input['smearings'].output_map()
assert all(abs(float(i)-v) < 1e-8 for i, v in zip(a._input['smearings'].output_map()['smearings'].split(), [1.2, 0.2]))
a.smearings = '1.3 0.3'
assert len(a.smearings) == 2
assert all(abs(i-v) < 1e-8 for i, v in zip(a.smearings, [1.3, 0.3]))
assert 'smearings' in a._input['smearings'].output_map()
assert all(abs(float(i)-v) < 1e-8 for i, v in zip(a._input['smearings'].output_map()['smearings'].split(), [1.3, 0.3]))
a.smearings = '1.3, 0.3'
assert len(a.smearings) == 2
assert all(abs(i-v) < 1e-8 for i, v in zip(a.smearings, [1.3, 0.3]))
a.smearings = '1.3; 0.3'
assert len(a.smearings) == 2
assert all(abs(i-v) < 1e-8 for i, v in zip(a.smearings, [1.3, 0.3]))
a.smearings = None
assert a.smearings is None
assert a._input['smearings'].output_map() is None
try: a.smearings = 5.5
except ValueError: pass
else: raise Exception()
try: a.smearings = [5.5, 'a']
except ValueError: pass
else: raise Exception()
示例2: __call__
# 需要导入模块: from pylada.vasp import Vasp [as 别名]
# 或者: from pylada.vasp.Vasp import nbands [as 别名]
def __call__(self, structure, outdir=None, **kwargs ):
from copy import deepcopy
from os import getcwd
from os.path import join
from pylada.misc import RelativePath
from pylada.error import ExternalRunFailed
from pylada.vasp.extract import Extract
from pylada.vasp import Vasp
from pylada.vasp.relax import Relax
# make this function stateless.
structure_ = structure.copy()
outdir = getcwd() if outdir is None else RelativePath(outdir).path
############ Calc 1 ###############
name = self.names[0]
## functional for Calc 1
relax = Relax(copy=deepcopy(self.vasp))
relax.relaxation = "volume ionic cellshape"
relax.maxiter = 10
relax.keep_steps = True
relax.first_trial = { "kpoints": "\n0\nAuto\n10", "encut": 0.9 }
## end of the functional
params = deepcopy(kwargs)
fulldir = join(outdir, name)
## if this calculation has not been done run it
output = relax(structure_, outdir=fulldir, **params)
if not output.success:
raise ExternalRunFailed("VASP calculation did not succeed.")
############ Calc 2 ###############
name = self.names[1]
## functional for Calc 2
wfn = Vasp(copy=deepcopy(self.vasp))
wfn.isym = 1
wfn.ismear = -5
wfn.nbands=24*len(structure_)
wfn.kpoints="\n0\nGamma\n4 4 4\n0. 0. 0.\n"
## end of the functional
params = deepcopy(kwargs)
fulldir = join(outdir, name)
## if this calculation has not been done, run it
output = wfn(structure_, outdir=fulldir, restart=output, **params)
if not output.success:
raise ExternalRunFailed("VASP calculation did not succeed.")
return self.Extract(fulldir)
示例3: __call__
# 需要导入模块: from pylada.vasp import Vasp [as 别名]
# 或者: from pylada.vasp.Vasp import nbands [as 别名]
def __call__(self, structure, outdir=None, vasp=None, **kwargs ):
from copy import deepcopy
from os import getcwd
from os.path import join
from pylada.misc import RelativePath
from pylada.error import ExternalRunFailed
from pylada.vasp.extract import Extract, MassExtract
from pylada.vasp import Vasp
from pylada.vasp.relax import Relax
# make this function stateless.
structure_ = structure.copy()
outdir = getcwd() if outdir is None else RelativePath(outdir).path
############ Calc 1 ###############
name = self.names[0]
## functional for Calc 1
relax = Relax(copy=vasp)
relax.relaxation = "volume ionic cellshape"
relax.maxiter = 10
relax.keep_steps = True
relax.first_trial = { "kpoints": "\n0\nAuto\n10", "encut": 0.9 }
## end of the functional
params = deepcopy(kwargs)
fulldir = join(outdir, name)
## if this calculation has not been done run it
output = relax(structure_, outdir=fulldir, restart=None, **params)
if not output.success:
raise ExternalRunFailed("VASP calculation did not succeed.")
############ Calc 2 ###############
name = self.names[1]
## functional for Calc 2
final = Vasp(copy=vasp)
final.nbands=24*len(structure_)
final.kpoints="\n0\nGamma\n2 2 2\n0. 0. 0.\n"
final.loptics=True
final.relaxation="static"
## end of the functional
params = deepcopy(kwargs)
fulldir = join(outdir, name)
## if this calculation has not been done, run it
output = final(structure_, outdir=fulldir, restart=output, **params)
if not output.success:
raise ExternalRunFailed("VASP calculation did not succeed.")
############## GW Loop ########################
for name in self.names[2:]:
gw = Vasp(copy=vasp)
gw.kpoints ="\n0\nGamma\n2 2 2\n0. 0. 0.\n"
gw.nbands =24*len(structure_)
gw.lcharg = True
gw.add_keyword('nelm',1)
gw.add_keyword('algo','gw')
gw.add_keyword('LMAXFOCKAE',4)
gw.add_keyword('nomega',64)
gw.add_keyword('precfock','fast')
gw.add_keyword('encutgw',50)
gw.add_keyword('encutlf',50)
gw.add_keyword('lrpa',False)
gw.add_keyword('nkred',2)
params = deepcopy(kwargs)
fulldir = join(outdir, name)
## if this calculation has not been done, run it
output = gw(structure_, outdir=fulldir, restart=output, **params)
if not output.success:
raise ExternalRunFailed("VASP calculation did not succeed.")
#########################
return self.Extract(fulldir)
示例4: main
# 需要导入模块: from pylada.vasp import Vasp [as 别名]
# 或者: from pylada.vasp.Vasp import nbands [as 别名]
def main():
from boost.mpi import world
from scipy.optimize import fmin as scipy_simplex
from pylada.vasp import Extract, ExtractGW, Vasp, Specie
from pylada.vasp.specie import nlep as nlep_parameters, U as u_parameters
from pylada.vasp.incar import Standard, NBands
from sys import exit
indir = "SnO2"
dft_in = Extract(directory=indir, comm=world)
dft_in.OUTCAR = "OUTCAR_pbe"
dft_in.CONTCAR = "POSCAR"
gw_in = ExtractGW(directory=indir, comm=world)
gw_in.OUTCAR = "OUTCAR_gw"
gw_in.CONTCAR = "POSCAR"
# Creates species with nlep parameters to optimize
species = Specie\
(
"Sn",
path="pseudos/Sn",
U=[nlep_parameters(type="Dudarev", l=i, U0=0e0) for i in ["s", "p", "d"]]
),\
Specie\
(
"O",
path="pseudos/O",
U=[nlep_parameters(type="Dudarev", l=i, U0=0e0) for i in ["s", "p"]]
)
# add U to Sn atoms.
species[0].U.append( u_parameters(type="Dudarev", U=2e0, l=2) )
# creates vasp launcher
vasp = Vasp\
(
kpoints = lambda x: "Automatic generation\n0\ngamma\n6 6 10\n0 0 0",
precision = "accurate",
smearing = "bloechl",
ediff = 1e-5,
relaxation = "ionic",
encut = 1, # uses ENMAX * 1, which is VASP default
species = species
)
# adds some extra parameters.
vasp.nbands = Standard("NBANDS", 64)
vasp.lorbit = Standard("LORBIT", 10)
vasp.npar = Standard("NPAR", 2)
vasp.lplane = Standard("LPLANE", ".TRUE.")
vasp.addgrid = Standard("ADDGRID", ".TRUE.")
del vasp.fftgrid
# creates objective function.
objective = Objective(vasp, dft_in, gw_in)
x0, f0, iter, funcalls, warnflag = scipy_simplex(objective, objective.x, maxfun=150, full_output=1, xtol=0.2)
world.barrier()
if world.rank == 0:
print "minimum value:", f0
print "for: ", x0 * units
print "after %i iterations and %i function calls." % (iter, funcalls)
print "with warning flag: ", warnflag
print final(x0)