本文整理汇总了Python中pylab.ylabel函数的典型用法代码示例。如果您正苦于以下问题:Python ylabel函数的具体用法?Python ylabel怎么用?Python ylabel使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了ylabel函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_number_alteration_by_tissue
def plot_number_alteration_by_tissue(self, fontsize=10, width=0.9):
"""Plot number of alterations
.. plot::
:width: 100%
:include-source:
from gdsctools import *
data = gdsctools_data("test_omnibem_genomic_alterations.csv.gz")
bem = OmniBEMBuilder(data)
bem.filter_by_gene_list(gdsctools_data("test_omnibem_genes.txt"))
bem.plot_number_alteration_by_tissue()
"""
count = self.unified.groupby(['TISSUE_TYPE'])['GENE'].count()
try:
count.sort_values(inplace=True, ascending=False)
except:
count.sort(inplace=True, ascending=False)
count.plot(kind="bar", width=width)
pylab.grid()
pylab.xlabel("Tissue Type", fontsize=fontsize)
pylab.ylabel("Total number of alterations in cell lines",
fontsize=fontsize)
try:pylab.tight_layout()
except:pass
示例2: plotLists
def plotLists(xList, xLabel=None, eListTitle=None, eList=None, eLabel=None, fListTitle=None, fList=None, fLabel=None):
if h2o.python_username!='kevin':
return
import pylab as plt
print "xList", xList
print "eList", eList
print "fList", fList
font = {'family' : 'normal',
'weight' : 'normal',
'size' : 26}
### plt.rc('font', **font)
plt.rcdefaults()
if eList:
if eListTitle:
plt.title(eListTitle)
plt.figure()
plt.plot (xList, eList)
plt.xlabel(xLabel)
plt.ylabel(eLabel)
plt.draw()
if fList:
if fListTitle:
plt.title(fListTitle)
plt.figure()
plt.plot (xList, fList)
plt.xlabel(xLabel)
plt.ylabel(fLabel)
plt.draw()
if eList or fList:
plt.show()
示例3: plotear
def plotear(xi,yi,zi):
# mask inner circle
interior1 = sqrt(((xi+1.5)**2) + (yi**2)) < 1.0
interior2 = sqrt(((xi-1.5)**2) + (yi**2)) < 1.0
zi[interior1] = ma.masked
zi[interior2] = ma.masked
p.figure(figsize=(16,10))
pyplot.jet()
max=2.8
min=0.4
steps = 50
levels=list()
labels=list()
for i in range(0,steps):
levels.append(int((max-min)/steps*100*i)*0.01+min)
for i in range(0,steps/2):
labels.append(levels[2*i])
CSF = p.contourf(xi,yi,zi,levels,norm=colors.LogNorm())
CS = p.contour(xi,yi,zi,levels, format='%.3f', labelsize='18')
p.clabel(CS,labels,inline=1,fontsize=9)
p.title('electrostatic potential of two spherical colloids, R=lambda/3',fontsize=24)
p.xlabel('z-coordinate (3*lambda)',fontsize=18)
p.ylabel('radial coordinate r (3*lambda)',fontsize=18)
# add a vertical bar with the color values
cbar = p.colorbar(CSF,ticks=labels,format='%.3f')
cbar.ax.set_ylabel('potential (reduced units)',fontsize=18)
cbar.add_lines(CS)
p.show()
示例4: param_set_averages_plot
def param_set_averages_plot(results):
averages_ocr = [
a[1] for a in sorted(
param_set_averages(results, metric='ocr').items(),
key=lambda x: int(x[0].split('-')[1]))
]
averages_q = [
a[1] for a in sorted(
param_set_averages(results, metric='q').items(),
key=lambda x: int(x[0].split('-')[1]))
]
averages_mse = [
a[1] for a in sorted(
param_set_averages(results, metric='mse').items(),
key=lambda x: int(x[0].split('-')[1]))
]
fig = plt.figure(figsize=(6, 4))
# plt.tight_layout()
plt.plot(averages_ocr, label='OCR', linewidth=2.0)
plt.plot(averages_q, label='Q', linewidth=2.0)
plt.plot(averages_mse, label='MSE', linewidth=2.0)
plt.ylim([0, 1])
plt.xlabel(u'Paslėptų neuronų skaičius')
plt.ylabel(u'Vidurinė Q įverčio pokyčio reikšmė')
plt.grid(True)
plt.tight_layout()
plt.legend(loc='lower right')
plt.show()
示例5: plot_sphere_x
def plot_sphere_x( s, fname ):
""" put plot of ionization fractions from sphere `s` into fname """
plt.figure()
s.Edges.units = 'kpc'
s.r_c.units = 'kpc'
xx = s.r_c
L = s.Edges[-1]
plt.plot( xx, np.log10( s.xHe1 ),
color='green', ls='-', label = r'$x_{\rm HeI}$' )
plt.plot( xx, np.log10( s.xHe2 ),
color='green', ls='--', label = r'$x_{\rm HeII}$' )
plt.plot( xx, np.log10( s.xHe3 ),
color='green', ls=':', label = r'$x_{\rm HeIII}$' )
plt.plot( xx, np.log10( s.xH1 ),
color='red', ls='-', label = r'$x_{\rm HI}$' )
plt.plot( xx, np.log10( s.xH2 ),
color='red', ls='--', label = r'$x_{\rm HII}$' )
plt.xlim( -L/20, L+L/20 )
plt.xlabel( 'r_c [kpc]' )
plt.ylim( -4.5, 0.2 )
plt.ylabel( 'log 10 ( x )' )
plt.grid()
plt.legend(loc='best', ncol=2)
plt.tight_layout()
plt.savefig( 'doc/img/x_' + fname )
示例6: plotEventFlop
def plotEventFlop(library, num, eventNames, sizes, times, events, filename = None):
from pylab import legend, plot, savefig, semilogy, show, title, xlabel, ylabel
import numpy as np
arches = sizes.keys()
bs = events[arches[0]].keys()[0]
data = []
names = []
for event, color in zip(eventNames, ['b', 'g', 'r', 'y']):
for arch, style in zip(arches, ['-', ':']):
if event in events[arch][bs]:
names.append(arch+'-'+str(bs)+' '+event)
data.append(sizes[arch][bs])
data.append(1e-3*np.array(events[arch][bs][event])[:,1])
data.append(color+style)
else:
print 'Could not find %s in %s-%d events' % (event, arch, bs)
semilogy(*data)
title('Performance on '+library+' Example '+str(num))
xlabel('Number of Dof')
ylabel('Computation Rate (GF/s)')
legend(names, 'upper left', shadow = True)
if filename is None:
show()
else:
savefig(filename)
return
示例7: plot_heatingrate
def plot_heatingrate(data_dict, filename, do_show=True):
pl.figure(201)
color_list = ['b','r','g','k','y','r','g','b','k','y','r',]
fmtlist = ['s','d','o','s','d','o','s','d','o','s','d','o']
result_dict = {}
for key in data_dict.keys():
x = data_dict[key][0]
y = data_dict[key][1][:,0]
y_err = data_dict[key][1][:,1]
p0 = np.polyfit(x,y,1)
fit = LinFit(np.array([x,y,y_err]).transpose(), show_graph=False)
p1 = [0,0]
p1[0] = fit.param_dict[0]['Slope'][0]
p1[1] = fit.param_dict[0]['Offset'][0]
print fit
x0 = np.linspace(0,max(x))
cstr = color_list.pop(0)
fstr = fmtlist.pop(0)
lstr = key + " heating: {0:.2f} ph/ms".format((p1[0]*1e3))
pl.errorbar(x/1e3,y,y_err,fmt=fstr + cstr,label=lstr)
pl.plot(x0/1e3,np.polyval(p0,x0),cstr)
pl.plot(x0/1e3,np.polyval(p1,x0),cstr)
result_dict[key] = 1e3*np.array(fit.param_dict[0]['Slope'])
pl.xlabel('Heating time (ms)')
pl.ylabel('nbar')
if do_show:
pl.legend()
pl.show()
if filename != None:
pl.savefig(filename)
return result_dict
示例8: Doplots_monthly
def Doplots_monthly(mypathforResults,PlottingDF,variable_to_fill, Site_ID,units,item):
ANN_label=str(item+"_NN") #Do Monthly Plots
print "Doing MOnthly plot"
#t = arange(1, 54, 1)
NN_label='Fc'
Plottemp = PlottingDF[[NN_label,item]][PlottingDF['day_night']!=1]
#Plottemp = PlottingDF[[NN_label,item]].dropna(how='any')
figure(1)
pl.title('Nightime ANN v Tower by year-month for '+item+' at '+Site_ID)
try:
xdata1a=Plottemp[item].groupby([lambda x: x.year,lambda x: x.month]).mean()
plotxdata1a=True
except:
plotxdata1a=False
try:
xdata1b=Plottemp[NN_label].groupby([lambda x: x.year,lambda x: x.month]).mean()
plotxdata1b=True
except:
plotxdata1b=False
if plotxdata1a==True:
pl.plot(xdata1a,'r',label=item)
if plotxdata1b==True:
pl.plot(xdata1b,'b',label=NN_label)
pl.ylabel('Flux')
pl.xlabel('Year - Month')
pl.legend()
pl.savefig(mypathforResults+'/ANN and Tower plots by year and month for variable '+item+' at '+Site_ID)
#pl.show()
pl.close()
time.sleep(1)
示例9: plotForce
def plotForce():
figure(size=3,aspect=0.5)
subplot(1,2,1)
from EvalTraj import plotFF
plotFF(vp=351,t=28,f=900,cm=0.6,foffset=8)
subplot_annotate()
subplot(1,2,2)
for i in [1,2,3,4]:
R=np.squeeze(np.load('Rdpse%d.npy'%i))
R=stats.nanmedian(R,axis=2)[:,1:,:]
dps=np.linspace(-1,1,201)[1:]
plt.plot(dps,R[:,:,2].mean(0));
plt.legend([0,0.1,0.2,0.3],loc=3)
i=2
R=np.squeeze(np.load('Rdpse%d.npy'%i))
R=stats.nanmedian(R,axis=2)[:,1:,:]
mn=np.argmin(R,axis=1)
y=np.random.randn(mn.shape[0])*0.00002+0.0438
plt.plot(np.sort(dps[mn[:,2]]),y,'+',mew=1,ms=6,mec=[ 0.39 , 0.76, 0.64])
plt.xlabel('Displacement of Force Origin')
plt.ylabel('Average Net Force Magnitude')
hh=dps[mn[:,2]]
err=np.std(hh)/np.sqrt(hh.shape[0])*stats.t.ppf(0.975,hh.shape[0])
err2=np.std(hh)/np.sqrt(hh.shape[0])*stats.t.ppf(0.75,hh.shape[0])
m=np.mean(hh)
print m, m-err,m+err
np.save('force',[m, m-err,m+err,m-err2,m+err2])
plt.xlim([-0.5,0.5])
plt.ylim([0.0435,0.046])
plt.grid(b=True,axis='x')
subplot_annotate()
示例10: plotB3reg
def plotB3reg():
w=loadStanFit('revE2B3BHreg.fit')
printCI(w,'mmu')
printCI(w,'mr')
for b in range(2):
subplot(1,2,b+1)
plt.title('')
px=np.array(np.linspace(-0.5,0.5,101),ndmin=2)
a0=np.array(w['mmu'][:,b],ndmin=2).T
a1=np.array(w['mr'][:,b],ndmin=2).T
y=np.concatenate([sap(a0+a1*px,97.5,axis=0),sap(a0+a1*px[:,::-1],2.5,axis=0)])
x=np.squeeze(np.concatenate([px,px[:,::-1]],axis=1))
plt.plot(px[0,:],np.median(a0)+np.median(a1)*px[0,:],'red')
#plt.plot([-1,1],[0.5,0.5],'grey')
ax=plt.gca()
ax.set_aspect(1)
ax.add_patch(plt.Polygon(np.array([x,y]).T,alpha=0.2,fill=True,fc='red',ec='w'))
y=np.concatenate([sap(a0+a1*px,75,axis=0),sap(a0+a1*px[:,::-1],25,axis=0)])
ax.add_patch(plt.Polygon(np.array([x,y]).T,alpha=0.2,fill=True,fc='red',ec='w'))
man=np.array([-0.4,-0.2,0,0.2,0.4])
mus=[]
for m in range(len(man)):
mus.append(loadStanFit('revE2B3BH%d.fit'%m)['mmu'][:,b])
mus=np.array(mus).T
errorbar(mus,x=man)
ax.set_xticks(man)
plt.xlim([-0.5,0.5])
plt.ylim([-0.4,0.8])
#plt.xlabel('Manipulated Displacement')
if b==0:
plt.ylabel('Perceived Displacemet')
plt.gca().set_yticklabels([])
subplot_annotate()
plt.text(-1.1,-0.6,'Pivot Displacement',fontsize=8);
示例11: plotB2reg
def plotB2reg(prefix=''):
w=loadStanFit(prefix+'revE2B2LHregCa.fit')
px=np.array(np.linspace(-0.5,0.5,101),ndmin=2)
a1=np.array(w['ma'][:,4],ndmin=2).T+1
a0=np.array(w['ma'][:,3],ndmin=2).T
printCI(w,'ma')
y=np.concatenate([sap(a0+a1*px,97.5,axis=0),sap(a0+a1*px[:,::-1],2.5,axis=0)])
x=np.squeeze(np.concatenate([px,px[:,::-1]],axis=1))
man=np.array([-0.4,-0.2,0,0.2,0.4])
plt.plot(px[0,:],np.median(a0)+np.median(a1)*px[0,:],'red')
#plt.plot([-1,1],[0.5,0.5],'grey')
ax=plt.gca()
ax.set_aspect(1)
ax.add_patch(plt.Polygon(np.array([x,y]).T,alpha=0.2,fill=True,fc='red',ec='w'))
y=np.concatenate([sap(a0+a1*px,75,axis=0),sap(a0+a1*px[:,::-1],25,axis=0)])
ax.add_patch(plt.Polygon(np.array([x,y]).T,alpha=0.2,fill=True,fc='red',ec='w'))
mus=[]
for m in range(len(man)):
mus.append(loadStanFit(prefix+'revE2B2LHC%d.fit'%m)['ma4']+man[m])
mus=np.array(mus).T
errorbar(mus,x=man)
ax.set_xticks(man)
plt.xlim([-0.5,0.5])
plt.ylim([-0.6,0.8])
plt.xlabel('Pivot Displacement')
plt.ylabel('Perceived Displacemet')
示例12: plotHistogram
def plotHistogram(data, preTime):
pylab.figure(1)
pylab.hist(data, bins=10)
pylab.xlabel("Virus Population At End of Simulation")
pylab.ylabel("Number of Trials")
pylab.title("{0} Time Steps Before Treatment Simulation".format(preTime))
pylab.show()
示例13: getOptCandGamma
def getOptCandGamma(cv_train, cv_label):
print "Finding optimal C and gamma for SVM with RBF Kernel"
C_range = 10.0 ** np.arange(-2, 9)
gamma_range = 10.0 ** np.arange(-5, 4)
param_grid = dict(gamma=gamma_range, C=C_range)
cv = StratifiedKFold(y=cv_label, n_folds=40)
# Use the svm.SVC() as the cost function to evaluate parameter choices
# NOTE: Perhaps we should run computations in parallel if needed. Does it
# do that already within the class?
grid = GridSearchCV(svm.SVC(), param_grid=param_grid, cv=cv)
grid.fit(cv_train, cv_label)
score_dict = grid.grid_scores_
scores = [x[1] for x in score_dict]
scores = np.array(scores).reshape(len(C_range), len(gamma_range))
pl.figure(figsize=(8,6))
pl.subplots_adjust(left=0.05, right=0.95, bottom=0.15, top=0.95)
pl.imshow(scores, interpolation='nearest', cmap=pl.cm.spectral)
pl.xlabel('gamma')
pl.ylabel('C')
pl.colorbar()
pl.xticks(np.arange(len(gamma_range)), gamma_range, rotation=45)
pl.yticks(np.arange(len(C_range)), C_range)
pl.show()
print "The best classifier is: ", grid.best_estimator_
示例14: geweke_plot
def geweke_plot(data, name, format='png', suffix='-diagnostic', path='./', fontmap = None,
verbose=1):
# Generate Geweke (1992) diagnostic plots
if fontmap is None: fontmap = {1:10, 2:8, 3:6, 4:5, 5:4}
# Generate new scatter plot
figure()
x, y = transpose(data)
scatter(x.tolist(), y.tolist())
# Plot options
xlabel('First iteration', fontsize='x-small')
ylabel('Z-score for %s' % name, fontsize='x-small')
# Plot lines at +/- 2 sd from zero
pyplot((nmin(x), nmax(x)), (2, 2), '--')
pyplot((nmin(x), nmax(x)), (-2, -2), '--')
# Set plot bound
ylim(min(-2.5, nmin(y)), max(2.5, nmax(y)))
xlim(0, nmax(x))
# Save to file
if not os.path.exists(path):
os.mkdir(path)
if not path.endswith('/'):
path += '/'
savefig("%s%s%s.%s" % (path, name, suffix, format))
示例15: simulation1
def simulation1(numTrials, numSteps, loc):
results = {'UsualDrunk': [], 'ColdDrunk': [], 'EDrunk': [], 'PhotoDrunk': [], 'DDrunk': []}
drunken_types = {'UsualDrunk': UsualDrunk, 'ColdDrunk': ColdDrunk, 'EDrunk': EDrunk, 'PhotoDrunk': PhotoDrunk,
'DDrunk': DDrunk}
for drunken in drunken_types.keys():
#Create field
initial_loc = Location(loc[0], loc[1])
field = Field()
print "Simu", drunken
drunk = Drunk(drunken)
drunk_man = drunken_types[drunken](drunk)
field.addDrunk(drunk_man, initial_loc)
#print drunk_man
for trial in range(numTrials):
distance = walkVector(field, drunk_man, numSteps)
results[drunken].append((round(distance[0], 1), round(distance[1], 1)))
print drunken, "=", results[drunken]
for result in results.keys():
# x, y = zip(*results[result])
# print "x", x
# print "y", y
pylab.plot(*zip(*results[result]), marker='o', color='r', ls='')
pylab.title(result)
pylab.xlabel('X coordinateds')
pylab.ylabel('Y coordinateds')
pylab.xlim(-100, 100)
pylab.ylim(-100, 100)
pylab.figure()
pylab.show