本文整理汇总了Python中pylab.xlim函数的典型用法代码示例。如果您正苦于以下问题:Python xlim函数的具体用法?Python xlim怎么用?Python xlim使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了xlim函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_frontier
def plot_frontier(self,frontier_only=False,plot_samples=True) :
""" Plot the frontier"""
frontier = self.frontier
frontier_energy = self.frontier_energy
feat1,feat2 = self.feats
pl.figure()
if not frontier_only :
ll_list1,ll_list2 = zip(*self.all_seq_energy)
pl.plot(ll_list1,ll_list2,'b*')
if plot_samples :
ll_list1,ll_list2 = zip(*self.sample_seq_energy)
pl.plot(ll_list1,ll_list2,'g*')
pl.plot(*zip(*sorted(frontier_energy)),color='magenta',\
marker='*', linestyle='dashed')
ctr = dict(zip(set(frontier_energy),[0]*
len(set(frontier_energy))))
for i,e in enumerate(frontier_energy) :
ctr[e] += 1
pl.text(e[0],e[1]+0.1*ctr[e],str(i),fontsize=10)
pl.text(e[0]+0.4,e[1]+0.1*ctr[e],frontier[i],fontsize=9)
pl.xlabel('Energy:'+feat1)
pl.ylabel('Energy:'+feat2)
pl.title('Energy Plot')
xmin,xmax = pl.xlim()
ymin,ymax = pl.ylim()
pl.xlim(xmin,xmax)
pl.ylim(ymin,ymax)
pic_dir = '../docs/tex/pics/'
pl.savefig(pic_dir+self.name+'.pdf')
pl.savefig(pic_dir+self.name+'.png')
示例2: plot_sphere_x
def plot_sphere_x( s, fname ):
""" put plot of ionization fractions from sphere `s` into fname """
plt.figure()
s.Edges.units = 'kpc'
s.r_c.units = 'kpc'
xx = s.r_c
L = s.Edges[-1]
plt.plot( xx, np.log10( s.xHe1 ),
color='green', ls='-', label = r'$x_{\rm HeI}$' )
plt.plot( xx, np.log10( s.xHe2 ),
color='green', ls='--', label = r'$x_{\rm HeII}$' )
plt.plot( xx, np.log10( s.xHe3 ),
color='green', ls=':', label = r'$x_{\rm HeIII}$' )
plt.plot( xx, np.log10( s.xH1 ),
color='red', ls='-', label = r'$x_{\rm HI}$' )
plt.plot( xx, np.log10( s.xH2 ),
color='red', ls='--', label = r'$x_{\rm HII}$' )
plt.xlim( -L/20, L+L/20 )
plt.xlabel( 'r_c [kpc]' )
plt.ylim( -4.5, 0.2 )
plt.ylabel( 'log 10 ( x )' )
plt.grid()
plt.legend(loc='best', ncol=2)
plt.tight_layout()
plt.savefig( 'doc/img/x_' + fname )
示例3: geweke_plot
def geweke_plot(data, name, format='png', suffix='-diagnostic', path='./', fontmap = None,
verbose=1):
# Generate Geweke (1992) diagnostic plots
if fontmap is None: fontmap = {1:10, 2:8, 3:6, 4:5, 5:4}
# Generate new scatter plot
figure()
x, y = transpose(data)
scatter(x.tolist(), y.tolist())
# Plot options
xlabel('First iteration', fontsize='x-small')
ylabel('Z-score for %s' % name, fontsize='x-small')
# Plot lines at +/- 2 sd from zero
pyplot((nmin(x), nmax(x)), (2, 2), '--')
pyplot((nmin(x), nmax(x)), (-2, -2), '--')
# Set plot bound
ylim(min(-2.5, nmin(y)), max(2.5, nmax(y)))
xlim(0, nmax(x))
# Save to file
if not os.path.exists(path):
os.mkdir(path)
if not path.endswith('/'):
path += '/'
savefig("%s%s%s.%s" % (path, name, suffix, format))
示例4: rmsdSpreadSubplot
def rmsdSpreadSubplot(multiplier=1.0, layout=(-1, -1)):
rmsd_data = dict( (e, rad_data[e]['innov'][quant]) for e in rad_data.iterkeys() )
spread_data = dict( (e, rad_data[e]['spread'][quant]) for e in rad_data.iterkeys() )
times = temp.getTimes()
n_t = len(times)
for exp, exp_name in exp_names.iteritems():
pylab.plot(sawtooth(times, times)[:(n_t + 1)], rmsd_data[exp][:(n_t + 1)], color=colors[exp], linestyle='-')
pylab.plot(times[(n_t / 2):], rmsd_data[exp][n_t::2], color=colors[exp], linestyle='-')
for exp, exp_name in exp_names.iteritems():
pylab.plot(sawtooth(times, times)[:(n_t + 1)], spread_data[exp][:(n_t + 1)], color=colors[exp], linestyle='--')
pylab.plot(times[(n_t / 2):], spread_data[exp][n_t::2], color=colors[exp], linestyle='--')
ylim = pylab.ylim()
pylab.plot(times, -1 * np.ones((len(times),)), color='#999999', linestyle='-', label="RMS Innovation")
pylab.plot(times, -1 * np.ones((len(times),)), color='#999999', linestyle='--', label="Spread")
pylab.axhline(y=7, color='k', linestyle=':')
pylab.axvline(x=14400, color='k', linestyle=':')
pylab.ylabel("RMS Innovation/Spread (dBZ)", size='large')
pylab.xlim(times[0], times[-1])
pylab.ylim(ylim)
pylab.legend(loc=4)
pylab.xticks(times[::2], [ "" for t in times[::2] ])
pylab.yticks(size='x-large')
return
示例5: plotB3reg
def plotB3reg():
w=loadStanFit('revE2B3BHreg.fit')
printCI(w,'mmu')
printCI(w,'mr')
for b in range(2):
subplot(1,2,b+1)
plt.title('')
px=np.array(np.linspace(-0.5,0.5,101),ndmin=2)
a0=np.array(w['mmu'][:,b],ndmin=2).T
a1=np.array(w['mr'][:,b],ndmin=2).T
y=np.concatenate([sap(a0+a1*px,97.5,axis=0),sap(a0+a1*px[:,::-1],2.5,axis=0)])
x=np.squeeze(np.concatenate([px,px[:,::-1]],axis=1))
plt.plot(px[0,:],np.median(a0)+np.median(a1)*px[0,:],'red')
#plt.plot([-1,1],[0.5,0.5],'grey')
ax=plt.gca()
ax.set_aspect(1)
ax.add_patch(plt.Polygon(np.array([x,y]).T,alpha=0.2,fill=True,fc='red',ec='w'))
y=np.concatenate([sap(a0+a1*px,75,axis=0),sap(a0+a1*px[:,::-1],25,axis=0)])
ax.add_patch(plt.Polygon(np.array([x,y]).T,alpha=0.2,fill=True,fc='red',ec='w'))
man=np.array([-0.4,-0.2,0,0.2,0.4])
mus=[]
for m in range(len(man)):
mus.append(loadStanFit('revE2B3BH%d.fit'%m)['mmu'][:,b])
mus=np.array(mus).T
errorbar(mus,x=man)
ax.set_xticks(man)
plt.xlim([-0.5,0.5])
plt.ylim([-0.4,0.8])
#plt.xlabel('Manipulated Displacement')
if b==0:
plt.ylabel('Perceived Displacemet')
plt.gca().set_yticklabels([])
subplot_annotate()
plt.text(-1.1,-0.6,'Pivot Displacement',fontsize=8);
示例6: plotFeatureImportance
def plotFeatureImportance(featureImportance, title, originalImage=None, lim=0.06, colorate=None):
"""
originalImage : the index of the original image. If None, ignore
"""
indices = featureImportanceIndices(len(featureImportance), originalImage)
pl.figure()
pl.title(title)
if colorate is not None:
nbType = len(colorate)
X = [[] for i in range(nbType)]
Y = [[] for i in range(nbType)]
for j, f in enumerate(featureImportance):
X[j % nbType].append(j)
Y[j % nbType].append(f)
for i in range(nbType):
pl.bar(X[i], Y[i], align="center", label=colorate[i][0], color=colorate[i][1])
pl.legend()
else:
pl.bar(range(len(featureImportance)), featureImportance, align="center")
#pl.xticks(pl.arange(len(indices)), indices, rotation=-90)
pl.xlim([-1, len(indices)])
pl.ylabel("Feature importance")
pl.xlabel("Filter indices")
pl.ylim(0, lim)
pl.show()
示例7: InitializePlot
def InitializePlot(self, goal_config):
self.fig = pl.figure()
lower_limits, upper_limits = self.boundary_limits
pl.xlim([lower_limits[0], upper_limits[0]])
pl.ylim([lower_limits[1], upper_limits[1]])
pl.plot(goal_config[0], goal_config[1], 'gx')
# Show all obstacles in environment
for b in self.robot.GetEnv().GetBodies():
if b.GetName() == self.robot.GetName():
continue
bb = b.ComputeAABB()
pl.plot([bb.pos()[0] - bb.extents()[0],
bb.pos()[0] + bb.extents()[0],
bb.pos()[0] + bb.extents()[0],
bb.pos()[0] - bb.extents()[0],
bb.pos()[0] - bb.extents()[0]],
[bb.pos()[1] - bb.extents()[1],
bb.pos()[1] - bb.extents()[1],
bb.pos()[1] + bb.extents()[1],
bb.pos()[1] + bb.extents()[1],
bb.pos()[1] - bb.extents()[1]], 'r')
pl.ion()
pl.show()
示例8: updatePlot
def updatePlot(self):
""" Updates the antenna config plot"""
self.sp_ax.clear()
self.sp_fig.clear()
row = self.slider.value()
self.spinner.setValue(row)
data_x = self.fits_data[row,0,0,0,:]
data_y = self.fits_data[row,0,0,1,:]
flagged_x = self.fits_flagged[row,0,0,0,:]
flagged_y = self.fits_flagged[row,0,0,1,:]
freqs = self.fits_freqs
tsys = self.fits_tsys[row,:]
#plt.plot(freqs, data_x)
plt.plot(freqs[flagged_x == 0], data_x[flagged_x == 0], color='#333333', label='Pol A [%2.1f Jy]'%tsys[0])
plt.plot(freqs[flagged_y == 0], data_y[flagged_y == 0], color='#CC0000', label='Pol B [%2.1f Jy]'%tsys[1])
plt.ylabel('%s [%s]'%(self.fits_data_name, self.fits_data_unit))
plt.xlabel('%s [%s]'%(self.fits_freq_type, self.fits_freq_unit))
plt.title('Beam %s: %s %s'%(self.fits_beam[row], self.fits_date[row], self.fits_time[row]))
plt.xlim(np.min(freqs[flagged_x == 0]), np.max(freqs[flagged_x == 0]))
plt.legend()
plt.show()
self.sp_fig.canvas.draw()
self.lab_info.setText(self.fits_filename)
示例9: draw
def draw(self):
print self.edgeno
pos = 0
dy = 8
edgeno = self.edgeno
edge = self.edges[edgeno]
edgeprev = self.edges[edgeno-1]
p = np.round(edge["top"](1024))
top = min(p+2*dy, 2048)
bot = min(p-2*dy, 2048)
self.cutout = self.flat[1][bot:top,:].copy()
pl.figure(1)
pl.clf()
start = 0
dy = 512
for i in xrange(2048/dy):
pl.subplot(2048/dy,1,i+1)
pl.xlim(start, start+dy)
if i == 0: pl.title("edge %i] %s|%s" % (edgeno,
edgeprev["Target_Name"], edge["Target_Name"]))
pl.subplots_adjust(left=.07,right=.99,bottom=.05,top=.95)
pl.imshow(self.flat[1][bot:top,start:start+dy], extent=(start,
start+dy, bot, top), cmap='Greys', vmin=2000, vmax=6000)
pix = np.arange(start, start+dy)
pl.plot(pix, edge["top"](pix), 'r', linewidth=1)
pl.plot(pix, edgeprev["bottom"](pix), 'r', linewidth=1)
pl.plot(edge["xposs_top"], edge["yposs_top"], 'o')
pl.plot(edgeprev["xposs_bot"], edgeprev["yposs_bot"], 'o')
hpp = edge["hpps"]
pl.axvline(hpp[0],ymax=.5, color='blue', linewidth=5)
pl.axvline(hpp[1],ymax=.5, color='red', linewidth=5)
hpp = edgeprev["hpps"]
pl.axvline(hpp[0],ymin=.5,color='blue', linewidth=5)
pl.axvline(hpp[1],ymin=.5,color='red', linewidth=5)
if False:
L = top-bot
Lx = len(edge["xposs"])
for i in xrange(Lx):
xp = edge["xposs"][i]
frac1 = (edge["top"](xp)-bot-1)/L
pl.axvline(xp,ymin=frac1)
for xp in edgeprev["xposs"]:
frac2 = (edgeprev["bottom"](xp)-bot)/L
pl.axvline(xp,ymax=frac2)
start += dy
示例10: plot_file_color
def plot_file_color(base, thin=True, start=0, size=14, save=False):
conf, track, pegs = load(base)
fig = pl.figure(figsize=(size,size*conf['top']/conf['wall']))
track = track[start:]
x = track[:,0]; y = track[:,1]
t = np.linspace(0,1,x.shape[0])
points = np.array([x,y]).transpose().reshape(-1,1,2)
segs = np.concatenate([points[:-1],points[1:]],axis=1)
lc = LineCollection(segs, linewidths=0.25, cmap=pl.cm.coolwarm)
lc.set_array(t)
pl.gca().add_collection(lc)
#pl.scatter(x, y, c=np.arange(len(x)),linestyle='-',cmap=pl.cm.coolwarm)
#pl.plot(track[-1000000:,0], track[-1000000:,1], '-', linewidth=0.0125, alpha=0.8)
for peg in pegs:
pl.gca().add_artist(pl.Circle(peg, conf['radius'], color='k', alpha=0.3))
pl.xlim(0, conf['wall'])
pl.ylim(0, conf['top'])
pl.xticks([])
pl.yticks([])
pl.tight_layout()
pl.show()
if save:
pl.savefig(base+".png", dpi=200)
示例11: tracks_movie
def tracks_movie(base, skip=1, frames=500, size=10):
"""
A movie of each particle as a point
"""
conf, track, pegs = load(base)
fig = pl.figure(figsize=(size,size*conf['top']/conf['wall']))
plot = None
for t in xrange(1,max(frames, track.shape[1]/skip)):
tmp = track[:,t*skip,:]
if not ((tmp[:,0] > 0) & (tmp[:,1] > 0) & (tmp[:,0] < conf['wall']) & (tmp[:,1] < conf['top'])).any():
continue
if plot is None:
plot = pl.plot(tmp[:,0], tmp[:,1], 'k,', alpha=1.0, ms=0.1)[0]
pl.xticks([])
pl.yticks([])
pl.xlim(0,conf['wall'])
pl.ylim(0,conf['top'])
pl.tight_layout()
else:
plot.set_xdata(tmp[:,0])
plot.set_ydata(tmp[:,1])
pl.draw()
pl.savefig(base+'-movie-%05d.png' % (t-1))
示例12: plotFreqVsGoodTuring
def plotFreqVsGoodTuring(counts, confidence=1.96, loglog=False):
"""
Draws a scatterplot of the empirical frequencies of the counted species
versus their Simple Good Turing smoothed values, in rank order. Depends on
pylab and matplotlib.
"""
import pylab
from matplotlib import rc
tot = float(sum(counts.values()))
freqs = dict([(species, cnt/tot) for species, cnt in counts.iteritems()])
sgt, p0 = simpleGoodTuringProbs(counts, confidence)
if loglog:
plotFunc = pylab.loglog
else:
plotFunc = pylab.plot
plotFunc(sorted(freqs.values(), reverse=True), 'kD', mfc='white',
label="Observed")
plotFunc(sorted(sgt.values(), reverse=True), 'k+',
label="Simple Good-Turing Estimate")
pylab.xlim(-0.5, len(freqs)+0.5)
pylab.xlabel("Rank")
pylab.ylabel("Frequency")
pylab.legend(numpoints=1)
示例13: plotVOI
def plotVOI(self,n,points,L,data,kern,temp1,temp2,a,m,path):
z=np.zeros(m)
for i in xrange(m):
z[i]=self.VOIfunc(n,points[i,:],L,data,kern,temp1,temp2,False,a,False)
fig=plt.figure()
fig.set_size_inches(21, 21)
plt.plot(points,z,'-')
plt.xlabel('x',fontsize=60)
Xp=data.Xhist[0:self._numberTraining,0]
pylab.plot(Xp,np.zeros(len(Xp))+0.00009,'o',color='red',markersize=40,label="Training point")
if n>0:
Xp=data.Xhist[self._numberTraining:self._numberTraining+n,0]
pylab.plot(Xp,np.zeros(len(Xp))+0.00009,'o',color='firebrick',markersize=40,label="Chosen point")
ax = plt.subplot(111)
box = ax.get_position()
ax.set_position([box.x0, box.y0+box.height*0.1, box.width, box.height*0.9])
# Put a legend to the right of the current axis
ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.09),ncol=2,fontsize=50)
pylab.xlim([-0.5,0.5])
# plt.legend()
plt.savefig(os.path.join(path,'%d'%n+"VOI_n.pdf"))
plt.close(fig)
示例14: plot_prob_effector
def plot_prob_effector(sens, fpr, xmax=1, baserate=0.1):
"""Plots a line graph of P(effector|positive test) against
the baserate of effectors in the input set to the classifier.
The baserate argument draws an annotation arrow
indicating P(pos|+ve) at that baserate
"""
assert 0.1 <= xmax <= 1, "Max x axis value must be in range [0,1]"
assert 0.01 <= baserate <= 1, "Baserate annotation must be in range [0,1]"
baserates = pylab.arange(0, 1.05, xmax * 0.005)
probs = [p_correct_given_pos(sens, fpr, b) for b in baserates]
pylab.plot(baserates, probs, 'r')
pylab.title("P(eff|pos) vs baserate; sens: %.2f, fpr: %.2f" % (sens, fpr))
pylab.ylabel("P(effector|positive)")
pylab.xlabel("effector baserate")
pylab.xlim(0, xmax)
pylab.ylim(0, 1)
# Add annotation arrow
xpos, ypos = (baserate, p_correct_given_pos(sens, fpr, baserate))
if baserate < xmax:
if xpos > 0.7 * xmax:
xtextpos = 0.05 * xmax
else:
xtextpos = xpos + (xmax-xpos)/5.
if ypos > 0.5:
ytextpos = ypos - 0.05
else:
ytextpos = ypos + 0.05
pylab.annotate('baserate: %.2f, P(pos|+ve): %.3f' % (xpos, ypos),
xy=(xpos, ypos),
xytext=(xtextpos, ytextpos),
arrowprops=dict(facecolor='black', shrink=0.05))
else:
pylab.text(0.05 * xmax, 0.95, 'baserate: %.2f, P(pos|+ve): %.3f' % \
(xpos, ypos))
示例15: drunkTest
def drunkTest(numTrials = 1000):
#stepsTaken = [10, 100, 1000, 10000]
stepsTaken = 1000
for dClass in (UsualDrunk, ColdDrunk, EDrunk, PhotoDrunk, DDrunk):
#initialize field
field = Field()
origin = Location(0, 0)
# initialize drunk
drunk = dClass('Drunk')
field.addDrunk(drunk, origin)
x_pos, y_pos = [], [] # initialize to empty
x, y = 0.0, 0.0
for trial in range(numTrials): # trials
x, y = walkVector(field, drunk, stepsTaken)
x_pos.append(x)
y_pos.append(y)
#pylab.plot(x_pos, y_pos, 'ro', s=5,
# label = dClass.__name__)
pylab.scatter(x_pos, y_pos,s=5, color='red')
pylab.title(str(dClass))
pylab.xlabel('x')
pylab.grid()
pylab.xlim(-100, 100)
pylab.ylim(-100,100)
pylab.ylabel('y')
pylab.show()