本文整理汇总了Python中pylab.title函数的典型用法代码示例。如果您正苦于以下问题:Python title函数的具体用法?Python title怎么用?Python title使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了title函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: window_fn_matrix
def window_fn_matrix(Q,N,num_remov=None,save_tag=None,lms=None):
Q = n.matrix(Q); N = n.matrix(N)
Ninv = uf.pseudo_inverse(N,num_remov=None) # XXX want to remove dynamically
#print Ninv
info = n.dot(Q.H,n.dot(Ninv,Q))
M = uf.pseudo_inverse(info,num_remov=num_remov)
W = n.dot(M,info)
if save_tag!=None:
foo = W[0,:]
foo = n.real(n.array(foo))
foo.shape = (foo.shape[1]),
print foo.shape
p.scatter(lms[:,0],foo,c=lms[:,1],cmap=mpl.cm.PiYG,s=50)
p.xlabel('l (color is m)')
p.ylabel('W_0,lm')
p.title('First Row of Window Function Matrix')
p.colorbar()
p.savefig('{0}/{1}_W.pdf'.format(fig_loc,save_tag))
p.clf()
print 'W ',W.shape
p.imshow(n.real(W))
p.title('Window Function Matrix')
p.colorbar()
p.savefig('{0}/{1}_W_im.pdf'.format(fig_loc,save_tag))
p.clf()
return W
示例2: plotear
def plotear(xi,yi,zi):
# mask inner circle
interior1 = sqrt(((xi+1.5)**2) + (yi**2)) < 1.0
interior2 = sqrt(((xi-1.5)**2) + (yi**2)) < 1.0
zi[interior1] = ma.masked
zi[interior2] = ma.masked
p.figure(figsize=(16,10))
pyplot.jet()
max=2.8
min=0.4
steps = 50
levels=list()
labels=list()
for i in range(0,steps):
levels.append(int((max-min)/steps*100*i)*0.01+min)
for i in range(0,steps/2):
labels.append(levels[2*i])
CSF = p.contourf(xi,yi,zi,levels,norm=colors.LogNorm())
CS = p.contour(xi,yi,zi,levels, format='%.3f', labelsize='18')
p.clabel(CS,labels,inline=1,fontsize=9)
p.title('electrostatic potential of two spherical colloids, R=lambda/3',fontsize=24)
p.xlabel('z-coordinate (3*lambda)',fontsize=18)
p.ylabel('radial coordinate r (3*lambda)',fontsize=18)
# add a vertical bar with the color values
cbar = p.colorbar(CSF,ticks=labels,format='%.3f')
cbar.ax.set_ylabel('potential (reduced units)',fontsize=18)
cbar.add_lines(CS)
p.show()
示例3: Xtest3
def Xtest3(self):
"""
Test from Kate Marvel
As the following code snippet demonstrates, regridding a
cdms2.tvariable.TransientVariable instance using regridTool='regrid2'
results in a new array that is masked everywhere. regridTool='esmf'
and regridTool='libcf' both work as expected.
This is similar to the original test but we construct our own
uniform grid. This should passes.
"""
import cdms2 as cdms
import numpy as np
filename = cdat_info.get_sampledata_path() + '/clt.nc'
a=cdms.open(filename)
data=a('clt')[0,...]
print data.mask #verify this data is not masked
GRID = cdms.grid.createUniformGrid(-90.0, 23, 8.0, -180.0, 36, 10.0, order="yx", mask=None)
test_data=data.regrid(GRID,regridTool='regrid2')
# check that the mask does not extend everywhere...
self.assertNotEqual(test_data.mask.sum(), test_data.size)
if PLOT:
pylab.subplot(2, 1, 1)
pylab.pcolor(data[...])
pylab.title('data')
pylab.subplot(2, 1, 2)
pylab.pcolor(test_data[...])
pylab.title('test_data (interpolated data)')
pylab.show()
示例4: plot_stress
def plot_stress(self, block_ids=None, fignum=0):
block_ids = self.check_block_ids_list(block_ids)
#
plt.figure(fignum)
ax1=plt.gca()
plt.clf()
plt.figure(fignum)
plt.clf()
ax0=plt.gca()
#
for block_id in block_ids:
rws = numpy.core.records.fromarrays(zip(*filter(lambda x: x['block_id']==block_id, self.shear_stress_sequences)), dtype=self.shear_stress_sequences.dtype)
stress_seq = []
for rw in rws:
stress_seq += [[rw['sweep_number'], rw['shear_init']]]
stress_seq += [[rw['sweep_number'], rw['shear_final']]]
X,Y = zip(*stress_seq)
#
ax0.plot(X,Y, '.-', label='block_id: %d' % block_id)
#
plt.figure(fignum+1)
plt.plot(rws['sweep_number'], rws['shear_init'], '.-', label='block_id: %d' % block_id)
plt.plot(rws['sweep_number'], rws['shear_final'], '.-', label='block_id: %d' % block_id)
plt.figure(fignum)
ax0.plot([min(self.shear_stress_sequences['sweep_number']), max(self.shear_stress_sequences['sweep_number'])], [0., 0.], 'k-')
ax0.legend(loc=0, numpoints=1)
plt.figure(fignum)
plt.title('Block shear_stress sequences')
plt.xlabel('sweep number')
plt.ylabel('shear stress')
示例5: showHistory
def showHistory(self, figNum):
pylab.figure(figNum)
plot = pylab.plot(self.history, label = 'Test Stock')
plot
pylab.title('Closing Price, Test ' + str(figNum))
pylab.xlabel('Day')
pylab.ylabel('Price')
示例6: add_quad
def add_quad(self, name, X, fZ):
"""
Create a 4-panel figure
name: title of the figure
X: 1D axes data
fZ: 2D data set (Fortran indexing)
"""
# Does not work on chipolata: (older matplotlib?)
# i = 0
# fig, axs = pylab.subplots(2,2)
# for ax in axs.ravel():
# pcm = ax.pcolormesh(F[i])
# ax.axis('tight')
# fig.colorbar(pcm,ax=ax)
# ax.set_title(name+','+str(i))
# i += 1
# The default ordering for 2D meshgrid is Fortran style
title = name.replace(',', '_')
self.figs.append((title, pylab.figure(title)))
for i in range(4):
fX, fY = numpy.meshgrid(X[i], X[i])
ax = pylab.subplot('22'+str(i+1))
pcm = ax.pcolormesh(fX, fY, fZ[i])
ax.axis('tight')
self.figs[-1][1].colorbar(pcm)
pylab.title(name+','+str(i))
示例7: plotHistogram
def plotHistogram(data, preTime):
pylab.figure(1)
pylab.hist(data, bins=10)
pylab.xlabel("Virus Population At End of Simulation")
pylab.ylabel("Number of Trials")
pylab.title("{0} Time Steps Before Treatment Simulation".format(preTime))
pylab.show()
示例8: plotB3reg
def plotB3reg():
w=loadStanFit('revE2B3BHreg.fit')
printCI(w,'mmu')
printCI(w,'mr')
for b in range(2):
subplot(1,2,b+1)
plt.title('')
px=np.array(np.linspace(-0.5,0.5,101),ndmin=2)
a0=np.array(w['mmu'][:,b],ndmin=2).T
a1=np.array(w['mr'][:,b],ndmin=2).T
y=np.concatenate([sap(a0+a1*px,97.5,axis=0),sap(a0+a1*px[:,::-1],2.5,axis=0)])
x=np.squeeze(np.concatenate([px,px[:,::-1]],axis=1))
plt.plot(px[0,:],np.median(a0)+np.median(a1)*px[0,:],'red')
#plt.plot([-1,1],[0.5,0.5],'grey')
ax=plt.gca()
ax.set_aspect(1)
ax.add_patch(plt.Polygon(np.array([x,y]).T,alpha=0.2,fill=True,fc='red',ec='w'))
y=np.concatenate([sap(a0+a1*px,75,axis=0),sap(a0+a1*px[:,::-1],25,axis=0)])
ax.add_patch(plt.Polygon(np.array([x,y]).T,alpha=0.2,fill=True,fc='red',ec='w'))
man=np.array([-0.4,-0.2,0,0.2,0.4])
mus=[]
for m in range(len(man)):
mus.append(loadStanFit('revE2B3BH%d.fit'%m)['mmu'][:,b])
mus=np.array(mus).T
errorbar(mus,x=man)
ax.set_xticks(man)
plt.xlim([-0.5,0.5])
plt.ylim([-0.4,0.8])
#plt.xlabel('Manipulated Displacement')
if b==0:
plt.ylabel('Perceived Displacemet')
plt.gca().set_yticklabels([])
subplot_annotate()
plt.text(-1.1,-0.6,'Pivot Displacement',fontsize=8);
示例9: plot_cost
def plot_cost(self):
if self.show_cost not in self.train_outputs[0][0]:
raise ShowNetError("Cost function with name '%s' not defined by given convnet." % self.show_cost)
train_errors = [o[0][self.show_cost][self.cost_idx] for o in self.train_outputs]
test_errors = [o[0][self.show_cost][self.cost_idx] for o in self.test_outputs]
numbatches = len(self.train_batch_range)
test_errors = numpy.row_stack(test_errors)
test_errors = numpy.tile(test_errors, (1, self.testing_freq))
test_errors = list(test_errors.flatten())
test_errors += [test_errors[-1]] * max(0,len(train_errors) - len(test_errors))
test_errors = test_errors[:len(train_errors)]
numepochs = len(train_errors) / float(numbatches)
pl.figure(1)
x = range(0, len(train_errors))
pl.plot(x, train_errors, 'k-', label='Training set')
pl.plot(x, test_errors, 'r-', label='Test set')
pl.legend()
ticklocs = range(numbatches, len(train_errors) - len(train_errors) % numbatches + 1, numbatches)
epoch_label_gran = int(ceil(numepochs / 20.)) # aim for about 20 labels
epoch_label_gran = int(ceil(float(epoch_label_gran) / 10) * 10) # but round to nearest 10
ticklabels = map(lambda x: str((x[1] / numbatches)) if x[0] % epoch_label_gran == epoch_label_gran-1 else '', enumerate(ticklocs))
pl.xticks(ticklocs, ticklabels)
pl.xlabel('Epoch')
# pl.ylabel(self.show_cost)
pl.title(self.show_cost)
示例10: evaluate_result
def evaluate_result(data, target, result):
assert(data.shape[0] == target.shape[0])
assert(target.shape[0] == result.shape[0])
correct = np.where( result == target )
miss = np.where( result != target )
class_rate = float(correct[0].shape[0]) / target.shape[0]
print "Correct classification rate:", class_rate
#get the 3s
mask = np.where(target == wanted[0])
data_3_correct = data[np.intersect1d(mask[0],correct[0])]
data_3_miss = data[np.intersect1d(mask[0],miss[0])]
#get the 8s
mask = np.where(target == wanted[1])
data_8_correct = data[np.intersect1d(mask[0],correct[0])]
data_8_miss = data[np.intersect1d(mask[0],miss[0])]
#plot
plot.title("Scatter")
plot.xlabel("x_0")
plot.ylabel("x_1")
size = 20
plot.scatter(data_3_correct[:,0], data_3_correct[:,1], marker = "x", c = "r", s = size )
plot.scatter( data_3_miss[:,0], data_3_miss[:,1], marker = "x", c = "b", s = size )
plot.scatter(data_8_correct[:,0], data_8_correct[:,1], marker = "o", c = "r", s = size )
plot.scatter( data_8_miss[:,0], data_8_miss[:,1], marker = "o", c = "b", s = size )
plot.show()
示例11: plot_roc
def plot_roc(self, roc=None):
"""Plot ROC curves
.. plot::
:include-source:
:width: 80%
from dreamtools import rocs
r = rocs.ROC()
r.scores = [.9,.5,.6,.7,.1,.2,.6,.4,.7,.9, .2]
r.classes = [1,0,1,0,0,1,1,0,0,1,1]
r.plot_roc()
"""
if roc == None:
roc = self.get_roc()
from pylab import plot, xlim, ylim ,grid, title, xlabel, ylabel
x = roc['fpr']
plot(x, roc['tpr'], '-o')
plot([0,1], [0,1],'r')
ylim([0, 1])
xlim([0, 1])
grid(True)
title("ROC curve (AUC=%s)" % self.compute_auc(roc))
xlabel("FPR")
ylabel("TPR")
示例12: PlotLine
def PlotLine(type):
i=j=0
pylab.figure(type)
if type==0:
pylab.title("Geomagnetism")
pylab.xlabel("Distance")
pylab.ylabel("Value")
elif type==1:
pylab.title("Compass")
pylab.xlabel("Distance")
pylab.ylabel("Value")
for path in pathlist:
f = open(path)
f.readline()
data = np.loadtxt(f)
dataAfterfilter = filters.median(data,10)
if type == 0:
pylab.plot(dataAfterfilter, color[i] ,label =lablelist[i])
i=i+1
pylab.legend()
elif type == 1:
pylab.plot(data[:,1], color[i] ,label =lablelist[i])
i=i+1
pylab.legend()
pass
示例13: simulationWithDrug
def simulationWithDrug():
"""
Runs simulations and plots graphs for problem 4.
Instantiates a patient, runs a simulation for 150 timesteps, adds
guttagonol, and runs the simulation for an additional 150 timesteps.
total virus population vs. time and guttagonol-resistant virus population
vs. time are plotted
"""
maxBirthProb = .1
clearProb = .05
resistances = {'guttagonal': False}
mutProb = .005
total = [100]
g = [0]
badVirus = ResistantVirus(maxBirthProb, clearProb, resistances, mutProb)
viruses = [badVirus]*total[0]
maxPop = 1000
Bob = Patient(viruses, maxPop)
for i in range(150):
Bob.update()
gVirus = 0
for v in Bob.viruses:
if v.isResistantTo('guttagonal'):
gVirus += 1
#print "g = ", gVirus
#print "t = ", len(Bob.viruses)
#print
g += [gVirus]
total += [len(Bob.viruses)]
Bob.addPrescription('guttagonal')
for i in range(150):
Bob.update()
gVirus = 0
for v in Bob.viruses:
if v.isResistantTo('guttagonal'):
gVirus += 1
g += [gVirus]
total += [len(Bob.viruses)]
pylab.title("Number of Viruses with Different Resistances to Guttagonal")
pylab.xlabel("Number of Timesteps")
pylab.ylabel("Number of Viruses")
pylab.plot(g, '-r', label = 'Resistant')
pylab.plot(total, '-b', label = 'Total')
pylab.legend(loc = 'lower right')
pylab.show()
示例14: plot_signal
def plot_signal(x,y,title,labelx,labley,position):
pylab.subplot (9, 1, position)
pylab.plot(x,y)
pylab.title(title)
pylab.xlabel(labelx)
pylab.ylabel(labley)
pylab.grid(True)
示例15: drawPrfastscore
def drawPrfastscore(tp,fp,scr,tot,show=True):
tp=numpy.cumsum(tp)
fp=numpy.cumsum(fp)
rec=tp/tot
prec=tp/(fp+tp)
#dif=numpy.abs(prec[1:]-rec[1:])
dif=numpy.abs(prec[::-1]-rec[::-1])
pos=dif.argmin()
pos=len(dif)-pos-1
ap=0
for t in numpy.linspace(0,1,11):
pr=prec[rec>=t]
if pr.size==0:
pr=0
p=numpy.max(pr);
ap=ap+p/11;
if show:
pylab.plot(rec,prec,'-g')
pylab.title("AP=%.3f EPRthr=%.3f"%(ap,scr[pos]))
pylab.xlabel("Recall")
pylab.ylabel("Precision")
pylab.grid()
pylab.show()
pylab.draw()
return rec,prec,scr,ap,scr[pos]