本文整理汇总了Python中pylab.text函数的典型用法代码示例。如果您正苦于以下问题:Python text函数的具体用法?Python text怎么用?Python text使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了text函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_cfl_results
def plot_cfl_results(results):
cfl = np.array([r.CFL_NUMBER for r in results.ANALYSES.values()])
its = np.array([r.ITERATIONS for r in results.ANALYSES.values()])
evl = np.arange(len(cfl))
i = np.argsort(cfl)
cfl = cfl[i]
its = its[i]
evl = evl[i]
its[its > 1000] = np.nan
plt.figure(1)
plt.clf()
plt.plot(cfl, its, "bo-", lw=2, ms=10)
plt.xlabel("CFL Number")
plt.ylabel("Iterations")
for e, x, y in zip(evl, cfl, its):
plt.text(x, y, "%i" % (e + 1))
plt.savefig("cfl_history.eps")
plt.close()
示例2: plotB3reg
def plotB3reg():
w=loadStanFit('revE2B3BHreg.fit')
printCI(w,'mmu')
printCI(w,'mr')
for b in range(2):
subplot(1,2,b+1)
plt.title('')
px=np.array(np.linspace(-0.5,0.5,101),ndmin=2)
a0=np.array(w['mmu'][:,b],ndmin=2).T
a1=np.array(w['mr'][:,b],ndmin=2).T
y=np.concatenate([sap(a0+a1*px,97.5,axis=0),sap(a0+a1*px[:,::-1],2.5,axis=0)])
x=np.squeeze(np.concatenate([px,px[:,::-1]],axis=1))
plt.plot(px[0,:],np.median(a0)+np.median(a1)*px[0,:],'red')
#plt.plot([-1,1],[0.5,0.5],'grey')
ax=plt.gca()
ax.set_aspect(1)
ax.add_patch(plt.Polygon(np.array([x,y]).T,alpha=0.2,fill=True,fc='red',ec='w'))
y=np.concatenate([sap(a0+a1*px,75,axis=0),sap(a0+a1*px[:,::-1],25,axis=0)])
ax.add_patch(plt.Polygon(np.array([x,y]).T,alpha=0.2,fill=True,fc='red',ec='w'))
man=np.array([-0.4,-0.2,0,0.2,0.4])
mus=[]
for m in range(len(man)):
mus.append(loadStanFit('revE2B3BH%d.fit'%m)['mmu'][:,b])
mus=np.array(mus).T
errorbar(mus,x=man)
ax.set_xticks(man)
plt.xlim([-0.5,0.5])
plt.ylim([-0.4,0.8])
#plt.xlabel('Manipulated Displacement')
if b==0:
plt.ylabel('Perceived Displacemet')
plt.gca().set_yticklabels([])
subplot_annotate()
plt.text(-1.1,-0.6,'Pivot Displacement',fontsize=8);
示例3: cmap_plot
def cmap_plot(cmdLine):
pylab.figure(figsize=[5,10])
a=outer(ones(10),arange(0,1,0.01))
subplots_adjust(top=0.99,bottom=0.00,left=0.01,right=0.8)
maps=[m for m in cm.datad if not m.endswith("_r")]
maps.sort()
l=len(maps)+1
for i, m in enumerate(maps):
print m
subplot(l,1,i+1)
pylab.setp(pylab.gca(),xticklabels=[],xticks=[],yticklabels=[],yticks=[])
imshow(a,aspect='auto',cmap=get_cmap(m),origin="lower")
pylab.text(100.85,0.5,m,fontsize=10)
# render plot
if cmdLine:
pylab.show(block=True)
else:
pylab.ion()
pylab.plot([])
pylab.ioff()
status = 1
return status
示例4: plot_prob_effector
def plot_prob_effector(sens, fpr, xmax=1, baserate=0.1):
"""Plots a line graph of P(effector|positive test) against
the baserate of effectors in the input set to the classifier.
The baserate argument draws an annotation arrow
indicating P(pos|+ve) at that baserate
"""
assert 0.1 <= xmax <= 1, "Max x axis value must be in range [0,1]"
assert 0.01 <= baserate <= 1, "Baserate annotation must be in range [0,1]"
baserates = pylab.arange(0, 1.05, xmax * 0.005)
probs = [p_correct_given_pos(sens, fpr, b) for b in baserates]
pylab.plot(baserates, probs, 'r')
pylab.title("P(eff|pos) vs baserate; sens: %.2f, fpr: %.2f" % (sens, fpr))
pylab.ylabel("P(effector|positive)")
pylab.xlabel("effector baserate")
pylab.xlim(0, xmax)
pylab.ylim(0, 1)
# Add annotation arrow
xpos, ypos = (baserate, p_correct_given_pos(sens, fpr, baserate))
if baserate < xmax:
if xpos > 0.7 * xmax:
xtextpos = 0.05 * xmax
else:
xtextpos = xpos + (xmax-xpos)/5.
if ypos > 0.5:
ytextpos = ypos - 0.05
else:
ytextpos = ypos + 0.05
pylab.annotate('baserate: %.2f, P(pos|+ve): %.3f' % (xpos, ypos),
xy=(xpos, ypos),
xytext=(xtextpos, ytextpos),
arrowprops=dict(facecolor='black', shrink=0.05))
else:
pylab.text(0.05 * xmax, 0.95, 'baserate: %.2f, P(pos|+ve): %.3f' % \
(xpos, ypos))
示例5: _draw_V
def _draw_V(self):
""" draw the V-cycle on our optional visualization """
xdown = numpy.linspace(0.0, 0.5, self.nlevels)
xup = numpy.linspace(0.5, 1.0, self.nlevels)
ydown = numpy.linspace(1.0, 0.0, self.nlevels)
yup = numpy.linspace(0.0, 1.0, self.nlevels)
pylab.plot(xdown, ydown, lw=2, color="k")
pylab.plot(xup, yup, lw=2, color="k")
pylab.scatter(xdown, ydown, marker="o", color="k", s=40)
pylab.scatter(xup, yup, marker="o", color="k", s=40)
if self.up_or_down == "down":
pylab.scatter(
xdown[self.nlevels - self.current_level - 1],
ydown[self.nlevels - self.current_level - 1],
marker="o",
color="r",
zorder=100,
s=38,
)
else:
pylab.scatter(xup[self.current_level], yup[self.current_level], marker="o", color="r", zorder=100, s=38)
pylab.text(0.7, 0.1, "V-cycle %d" % (self.current_cycle))
pylab.axis("off")
示例6: plot_genome
def plot_genome(out_file, data_file, samples, dpi=300, screen=False):
if screen: PL.rcParams.update(PLOT_PARAMS_SCREEN)
LOG.info("plot_genome - out_file=%s, data_file=%s, samples=%s, dpi=%d"%(out_file, data_file, str(samples), dpi))
colors = 'bgryckbgryck'
data = read_posterior(data_file)
if samples is None or len(samples) == 0: samples = data.keys()
if len(samples) == 0: return
PL.figure(None, [14, 4])
right_end = 0 # rightmost plotted base pair
for chrm in sort_chrms(data.values()[0]): # for chromosomes in ascending order
max_site = max(data[samples[0]][chrm]['L']) # length of chromosome
for s, sample in enumerate(samples): # plot all samples
I = SP.where(SP.array(data[sample][chrm]['SD']) < 0.3)[0] # at sites that have confident posteriors
PL.plot(SP.array(data[sample][chrm]['L'])[I] + right_end, SP.array(data[sample][chrm]['AF'])[I], alpha=0.4, color=colors[s], lw=2) # offset by the end of last chromosome
if right_end > 0: PL.plot([right_end, right_end], [0,1], 'k--', lw=0.4, alpha=0.2) # plot separators between chromosomes
new_right = right_end + max(data[sample][chrm]['L'])
PL.text(right_end + 0.5*(new_right - right_end), 0.9, str(chrm), horizontalalignment='center')
right_end = new_right # update rightmost end
PL.plot([0,right_end], [0.5,0.5], 'k--', alpha=0.3)
PL.xlim(0,right_end)
xrange = SP.arange(0,right_end, 1000000)
PL.xticks(xrange, ["%d"%(int(x/1000000)) for x in xrange])
PL.xlabel("Genome (Mb)"), PL.ylabel("Reference allele frequency")
PL.savefig(out_file, dpi=dpi)
示例7: plot_frontier
def plot_frontier(self,frontier_only=False,plot_samples=True) :
""" Plot the frontier"""
frontier = self.frontier
frontier_energy = self.frontier_energy
feat1,feat2 = self.feats
pl.figure()
if not frontier_only :
ll_list1,ll_list2 = zip(*self.all_seq_energy)
pl.plot(ll_list1,ll_list2,'b*')
if plot_samples :
ll_list1,ll_list2 = zip(*self.sample_seq_energy)
pl.plot(ll_list1,ll_list2,'g*')
pl.plot(*zip(*sorted(frontier_energy)),color='magenta',\
marker='*', linestyle='dashed')
ctr = dict(zip(set(frontier_energy),[0]*
len(set(frontier_energy))))
for i,e in enumerate(frontier_energy) :
ctr[e] += 1
pl.text(e[0],e[1]+0.1*ctr[e],str(i),fontsize=10)
pl.text(e[0]+0.4,e[1]+0.1*ctr[e],frontier[i],fontsize=9)
pl.xlabel('Energy:'+feat1)
pl.ylabel('Energy:'+feat2)
pl.title('Energy Plot')
xmin,xmax = pl.xlim()
ymin,ymax = pl.ylim()
pl.xlim(xmin,xmax)
pl.ylim(ymin,ymax)
pic_dir = '../docs/tex/pics/'
pl.savefig(pic_dir+self.name+'.pdf')
pl.savefig(pic_dir+self.name+'.png')
示例8: print_matplotlib
def print_matplotlib(s):
pylab.figure()
pylab.text(0,0,s)
pylab.axis('off')
pylab.figure()
#pylab.show()
return
示例9: _show_rates
def _show_rates(rate, wo, wt, attenuator, tau_NP, tau_P):
import pylab
#pylab.figure()
pylab.errorbar(rate, wt[0], yerr=wt[1], fmt='g.', label='attenuated')
pylab.errorbar(rate, wo[0], yerr=wo[1], fmt='b.', label='unattenuated')
pylab.xscale('log')
pylab.yscale('log')
pylab.xlabel('incident rate (counts/second)')
pylab.ylabel('observed rate (counts/second)')
pylab.legend(loc='best')
pylab.grid(True)
pylab.plot(rate, rate/attenuator, 'g-', label='target')
pylab.plot(rate, rate, 'b-', label='target')
Ipeak, Rpeak = peak_rate(tau_NP=tau_NP, tau_P=tau_P)
if rate[0] <= Ipeak <= rate[-1]:
pylab.axvline(x=Ipeak, ls='--', c='b')
pylab.text(x=Ipeak, y=0.05, s=' %g'%Ipeak,
ha='left', va='bottom',
transform=pylab.gca().get_xaxis_transform())
if False:
pylab.axhline(y=Rpeak, ls='--', c='b')
pylab.text(y=Rpeak, x=0.05, s=' %g\n'%Rpeak,
ha='left', va='bottom',
transform=pylab.gca().get_yaxis_transform())
示例10: scatter_stats
def scatter_stats(db, s1, s2, f1=None, f2=None, **kwargs):
if f1 == None:
f1 = lambda x: x # constant function
if f2 == None:
f2 = f1
x = []
xerr = []
y = []
yerr = []
for k in db:
x_k = [f1(x_ki) for x_ki in db[k].__getattribute__(s1).gettrace()]
y_k = [f2(y_ki) for y_ki in db[k].__getattribute__(s2).gettrace()]
x.append(pl.mean(x_k))
xerr.append(pl.std(x_k))
y.append(pl.mean(y_k))
yerr.append(pl.std(y_k))
pl.text(x[-1], y[-1], " %s" % k, fontsize=8, alpha=0.4, zorder=-1)
default_args = {"fmt": "o", "ms": 10}
default_args.update(kwargs)
pl.errorbar(x, y, xerr=xerr, yerr=yerr, **default_args)
pl.xlabel(s1)
pl.ylabel(s2)
示例11: compare_models
def compare_models(db, stoch="itn coverage", stat_func=None, plot_type="", **kwargs):
if stat_func == None:
stat_func = lambda x: x
X = {}
for k in sorted(db.keys()):
c = k.split("_")[2]
X[c] = []
for k in sorted(db.keys()):
c = k.split("_")[2]
X[c].append([stat_func(x_ki) for x_ki in db[k].__getattribute__(stoch).gettrace()])
x = pl.array([pl.mean(xc[0]) for xc in X.values()])
xerr = pl.array([pl.std(xc[0]) for xc in X.values()])
y = pl.array([pl.mean(xc[1]) for xc in X.values()])
yerr = pl.array([pl.std(xc[1]) for xc in X.values()])
if plot_type == "scatter":
default_args = {"fmt": "o", "ms": 10}
default_args.update(kwargs)
for c in X.keys():
pl.text(pl.mean(X[c][0]), pl.mean(X[c][1]), " %s" % c, fontsize=8, alpha=0.4, zorder=-1)
pl.errorbar(x, y, xerr=xerr, yerr=yerr, **default_args)
pl.xlabel("First Model")
pl.ylabel("Second Model")
pl.plot([0, 1], [0, 1], alpha=0.5, linestyle="--", color="k", linewidth=2)
elif plot_type == "rel_diff":
d1 = sorted(100 * (x - y) / x)
d2 = sorted(100 * (xerr - yerr) / xerr)
pl.subplot(2, 1, 1)
pl.title("Percent Model 2 deviates from Model 1")
pl.plot(d1, "o")
pl.xlabel("Countries sorted by deviation in mean")
pl.ylabel("deviation in mean (%)")
pl.subplot(2, 1, 2)
pl.plot(d2, "o")
pl.xlabel("Countries sorted by deviation in std err")
pl.ylabel("deviation in std err (%)")
elif plot_type == "abs_diff":
d1 = sorted(x - y)
d2 = sorted(xerr - yerr)
pl.subplot(2, 1, 1)
pl.title("Percent Model 2 deviates from Model 1")
pl.plot(d1, "o")
pl.xlabel("Countries sorted by deviation in mean")
pl.ylabel("deviation in mean")
pl.subplot(2, 1, 2)
pl.plot(d2, "o")
pl.xlabel("Countries sorted by deviation in std err")
pl.ylabel("deviation in std err")
else:
assert 0, "plot_type must be abs_diff, rel_diff, or scatter"
return pl.array([x, y, xerr, yerr])
示例12: suplabel
def suplabel(axis, label, label_prop=None, labelpad=3, ha='center', va='center'):
"""
Add super ylabel or xlabel to the figure
Similar to matplotlib.suptitle
axis - string: "x" or "y"
label - string
label_prop - keyword dictionary for Text
labelpad - padding from the axis (default: 5)
ha - horizontal alignment (default: "center")
va - vertical alignment (default: "center")
"""
fig = pylab.gcf()
xmin = []
ymin = []
for ax in fig.axes:
xmin.append(ax.get_position().xmin)
ymin.append(ax.get_position().ymin)
xmin, ymin = min(xmin), min(ymin)
dpi = fig.dpi
if axis.lower() == "y":
rotation = 90.
x = xmin-float(labelpad)/dpi
y = 0.5
elif axis.lower() == 'x':
rotation = 0.
x = 0.5
y = ymin - float(labelpad)/dpi
else:
raise Exception("Unexpected axis: x or y")
if label_prop is None:
label_prop = dict()
pylab.text(x, y, label, rotation=rotation,
transform=fig.transFigure,
ha=ha, va=va,
**label_prop)
示例13: PASTISConfMap
def PASTISConfMap(confmatrix):
norms = np.sum(confmatrix,axis=1)
for i in range(len(confmatrix[:,0])):
confmatrix[i,:] /= norms[i]
p.figure(12)
p.clf()
p.imshow(confmatrix,interpolation='nearest',origin='lower',cmap='YlOrRd')
#box labels
for x in range(len(confmatrix[:,0])):
for y in range(len(confmatrix[:,0])):
if confmatrix[y,x] > 0.05:
if confmatrix[y,x]>0.7:
p.text(x,y,str(np.round(confmatrix[y,x],decimals=3)),va='center',ha='center',color='w')
else:
p.text(x,y,str(np.round(confmatrix[y,x],decimals=3)),va='center',ha='center')
#plot grid lines (using p.grid leads to unwanted offset)
for x in [0.5,1.5,2.5,3.5,4.5]:
p.plot([x,x],[-0.5,6.5],'k--')
for y in [0.5,1.5,2.5,3.5,4.5]:
p.plot([-0.5,6.5],[y,y],'k--')
p.xlim(-0.5,5.5)
p.ylim(-0.5,5.5)
p.xlabel('Predicted Class')
p.ylabel('True Class')
#class labels
p.xticks([0,1,2,3,4,5],['Planet', 'EB', 'ET', 'PSB','BEB', 'BTP'],rotation='vertical')
p.yticks([0,1,2,3,4,5],['Planet', 'EB', 'ET', 'PSB','BEB', 'BTP'])
示例14: plotVowelProportionHistogram
def plotVowelProportionHistogram(wordList, numBins=15):
"""
Plots a histogram of the proportion of vowels in each word in wordList
using the specified number of bins in numBins
"""
vowels = 'aeiou'
vowelProportions = []
for word in wordList:
vowelsCount = 0.0
for letter in word:
if letter in vowels:
vowelsCount += 1
vowelProportions.append(vowelsCount / len(word))
meanProportions = sum(vowelProportions) / len(vowelProportions)
print "Mean proportions: ", meanProportions
pylab.figure(1)
pylab.hist(vowelProportions, bins=15)
pylab.title("Histogram of Proportions of Vowels in Each Word")
pylab.ylabel("Count of Words in Each Bucket")
pylab.xlabel("Proportions of Vowels in Each Word")
ymin, ymax = pylab.ylim()
ymid = (ymax - ymin) / 2
pylab.text(0.03, ymid, "Mean = {0}".format(
str(round(meanProportions, 4))))
pylab.vlines(0.5, 0, ymax)
pylab.text(0.51, ymax - 0.01 * ymax, "0.5", verticalalignment = 'top')
pylab.show()
示例15: bondlengths
def bondlengths(Ea, dE):
"""Calculate bond lengths and write to bondlengths.csv file"""
B = []
E0 = []
csv = open('bondlengths.csv', 'w')
for formula, energies in dE:
bref = diatomic[formula][1]
b = np.linspace(0.96 * bref, 1.04 * bref, 5)
e = np.polyfit(b, energies, 3)
if not formula in Ea:
continue
ea, eavasp = Ea[formula]
dedb = np.polyder(e, 1)
b0 = np.roots(dedb)[1]
assert abs(b0 - bref) < 0.1
b = np.linspace(0.96 * bref, 1.04 * bref, 20)
e = np.polyval(e, b) - ea
if formula == 'O2':
plt.plot(b, e, '-', color='0.7', label='GPAW')
else:
plt.plot(b, e, '-', color='0.7', label='_nolegend_')
name = latex(data[formula]['name'])
plt.text(b[0], e[0] + 0.2, name)
B.append(bref)
E0.append(-eavasp)
csv.write('`%s`, %.3f, %.3f, %+.3f\n' %
(name[1:-1], b0, bref, b0 - bref))
plt.plot(B, E0, 'g.', label='reference')
plt.legend(loc='lower right')
plt.xlabel('Bond length $\mathrm{\AA}$')
plt.ylabel('Energy [eV]')
plt.savefig('bondlengths.png')