本文整理汇总了Python中pylab.suptitle函数的典型用法代码示例。如果您正苦于以下问题:Python suptitle函数的具体用法?Python suptitle怎么用?Python suptitle使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了suptitle函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: transmission
def transmission(path,g,src,dest):
global disp_count
global bar_colors
global edge_colors
global node_colors
k=0
j=0
list_of_edges = g.edges()
for node in path :
k=path.index(node)
disp_count = disp_count + 1
if k != (len(path)-1):
k=path[k+1]
j=list_of_edges.index((node,k))
initialize_edge_colors(j)
#ec[disp_count].remove(-3000)
pylab.subplot(121)
nx.draw_networkx(g,pos = nx.circular_layout(g),node_color= node_colors,edge_color = edge_colors)
pylab.annotate("Source",node_positions[src])
pylab.annotate("Destination",node_positions[dest])
pylab.title("Transmission")
he=initializeEnergies(disp_count)
print he
pylab.subplot(122)
pylab.bar(left=[1,2,3,4,5],height=[300,300,300,300,300],width=0.5,color = ['w','w','w','w','w'],linewidth=0)
pylab.bar(left=[1,2,3,4,5],height=initializeEnergies(disp_count),width=0.5,color = 'b')
pylab.title("Node energies")
#pylab.legend(["already passed throgh","passing" , "yet to pass"])
pylab.xlabel('Node number')
pylab.ylabel('Energy')
pylab.suptitle('Leach Protocol', fontsize=12)
pylab.pause(2)
else :
return
示例2: group_plots
def group_plots(ylist, ncols, x = None,
titles = None,
suptitle = None,
ylabels = None,
figsize = None,
sameyscale = True,
order='C',
imkw={}):
import pylab as pl
nrows = np.ceil(len(ylist)/float(ncols))
figsize = ifnot(figsize, (2*ncols,2*nrows))
fh, axs = pl.subplots(int(nrows), int(ncols),
sharex=True,
sharey=bool(sameyscale),
figsize=figsize)
ymin,ymax = data_range(ylist)
axlist = axs.ravel(order=order)
for i,f in enumerate(ylist):
x1 = ifnot(x, range(len(f)))
_im = axlist[i].plot(x1,f,**imkw)
if titles is not None:
pl.setp(axlist[i], title = titles[i])
if ylabels is not None:
pl.setp(axlist[i], ylabel=ylabels[i])
if suptitle:
pl.suptitle(suptitle)
return
示例3: log_posterior
def log_posterior(self,theta):
model_g1 , model_g2, limit_mask , _ , _ = self.draw_model(theta)
likelihood = self.log_likelihood(model_g1,model_g2,limit_mask)
prior = self.log_prior(theta)
if not np.isfinite(prior):
posterior = -np.inf
else:
# use no info from prior for now
posterior = likelihood
if logger.level == logging.DEBUG:
n_progress = 10
elif logger.level == logging.INFO:
n_progress = 1000
if self.n_model_evals % n_progress == 0:
logger.info('%7d post=% 2.8e like=% 2.8e prior=% 2.4e M200=% 6.3e ' % (self.n_model_evals,posterior,likelihood,prior,theta[0]))
if np.isnan(posterior):
import pdb; pdb.set_trace()
if self.save_all_models:
self.plot_residual_g1g2(model_g1,model_g2,limit_mask)
pl.suptitle('model post=% 10.8e M200=%5.2e' % (posterior,theta[0]) )
filename_fig = 'models/res2.%04d.png' % self.n_model_evals
pl.savefig(filename_fig)
logger.debug('saved %s' % filename_fig)
pl.close()
return posterior
示例4: plot_weights
def plot_weights(init_som, final_som, title=['SOM init', 'SOM final'], dim_lab=None):
'''
Function to plot neural weights before and after the training for each dimension.
'''
assert init_som.shape == final_som.shape
n, d = init_som.shape
width = np.int(np.sqrt(n))
if dim_lab is None:
dim_lab = ['w' + str(i) for i in xrange(d)]
fig = plt.figure()
for lab, i in zip(dim_lab, xrange(d)):
# plot weights before training
plt.suptitle(title[0], fontsize = 14)
ax = fig.add_subplot(2, d, i+1)
img = init_som[:, i].reshape(width, width)
ax.imshow(img, interpolation='nearest')
plt.title(lab)
# same weights after training
ax = fig.add_subplot(2, d, (i+1) + d)
if i==int(d/2.): plt.title(title[1])
img_f = final_som[:, i].reshape(width, width)
ax.imshow(img_f, interpolation='nearest')
示例5: plot_bases
def plot_bases(self, autoscale=True, stampsize=None):
import pylab as plt
N = len(self.psfbases)
cols = int(np.ceil(np.sqrt(N)))
rows = int(np.ceil(N / float(cols)))
plt.clf()
plt.subplots_adjust(hspace=0, wspace=0)
cut = 0
if stampsize is not None:
H, W = self.shape
assert H == W
cut = max(0, (H - stampsize) / 2)
ima = dict(interpolation="nearest", origin="lower")
if autoscale:
mx = self.psfbases.max()
ima.update(vmin=-mx, vmax=mx)
nil, xpows, ypows = self.polynomials(0.0, 0.0, powers=True)
for i, (xp, yp, b) in enumerate(zip(xpows, ypows, self.psfbases)):
plt.subplot(rows, cols, i + 1)
if cut > 0:
b = b[cut:-cut, cut:-cut]
if autoscale:
plt.imshow(b, **ima)
else:
mx = np.abs(b).max()
plt.imshow(b, vmin=-mx, vmax=mx, **ima)
plt.xticks([])
plt.yticks([])
plt.title("x^%i y^%i" % (xp, yp))
plt.suptitle("PsfEx eigen-bases")
示例6: get_cav
def get_cav(c_mat,nchan,scaling=False):
#Compute Cav by taking diags, averaging and reforming the matrix
diags =[c_mat.diagonal(count) for count in xrange(nchan-1, -nchan,-1)]
cav=n.zeros_like(c_mat)
for count,count_chan in enumerate(range(nchan-1,-nchan,-1)):
cav += n.diagflat( n.mean(diags[count]).repeat(len(diags[count])), count_chan)
if scaling:
temp=cav.copy()
for count in xrange(nchan):
cav[count,:] *= n.sqrt(c_mat[count,count]/temp[count,count])
cav[:,count] *= n.sqrt(c_mat[count,count]/temp[count,count])
if not n.allclose(cav.T.conj(),cav):
print 'Cav is not Hermitian'
print 'bl'
if PLOT and False:
p.subplot(131); capo.arp.waterfall(c_mat,mode='real',mx=3,drng=6);
p.title('C')
p.subplot(132); capo.arp.waterfall(cav,mode='real',mx=3,drng=6); p.colorbar()
p.title('Cav')
p.subplot(133); capo.arp.waterfall(diff,mode='real',mx=500,drng=500); p.colorbar()
p.title('Abs Difference')
p.suptitle('%d_%d'%a.miriad.bl2ij(bl))
p.show()
return cav
示例7: _show_plots
def _show_plots(target, fitted, wt, wo, corrected):
tau_NP, tau_P, attenuator, rate = target
tau_NP_f, tau_P_f, attenuation_f, rate_f = fitted
# Plot the results
sim_pars = (r'Sim $\tau_{NP}=%g\,{\rm %s}$, $\tau_{P}=%g\,{\rm %s}$, ${\rm attenuator}=%g$'
)%(tau_NP, DEADTIME_UNITS, tau_P, DEADTIME_UNITS, attenuator)
fit_pars = (r'Fit $\tau_{NP}=%s$, $\tau_P=%s$, ${\rm attenuator}=%.2f$'
)%(
("%.2f"%tau_NP_f[0] if np.inf > tau_NP_f[1] > 0 else "-"),
("%.2f"%tau_P_f[0] if np.inf > tau_P_f[1] > 0 else "-"),
1./attenuation_f[0],
)
title = '\n'.join((sim_pars, fit_pars))
import pylab
pylab.subplot(211)
#pylab.errorbar(rate, rate_f[0], yerr=rate_f[1], fmt='c.', label='fitted rate')
#mincident = np.linspace(rate[0], rate[-1], 400)
#munattenuated = expected_rate(mincident, tau_NP_f[0], tau_P_f[0])
#mattenuated = expected_rate(mincident/attenuator, tau_NP_f[0], tau_P_f[0])
#minc = np.hstack((mincident, 0., mincident))
#mobs = np.hstack((munattenuated, np.NaN, mattenuated))
#pylab.plot(minc, mobs, 'c-', label='expected rate')
pylab.errorbar(rate, uval(corrected), yerr=udev(corrected), fmt='r.', label='corrected rate')
_show_rates(rate, wo, wt, attenuator, tau_NP_f[0], tau_P_f[0])
pylab.subplot(212)
_show_droop(rate, wo, wt, attenuator)
pylab.suptitle(title)
#pylab.figure(); _show_inversion(wo, tau_P_f, tau_NP_f)
pylab.show()
示例8: compare_expvaluecollections
def compare_expvaluecollections(coll1, coll2, show=True, **kwargs):
"""
Plot all subsystems of two ExpectationValueCollections.
*Arguments*
* *coll1*
First :class:`pycppqed.expvalues.ExpectationValue.Collection`.
* *coll2*
Second :class:`pycppqed.expvalues.ExpectationValue.Collection`.
* *show* (optional):
If True pylab.show() is called finally. This means a plotting
window will pop up automatically. (Default is True)
* Any other arguments that the pylab plotting command can use.
This function allows a fast comparison between two sets of expectation
values that were obtained by different calculations.
"""
import pylab
s1 = coll1.subsystems
s2 = coll2.subsystems
assert len(s1) == len(s2)
for i in range(len(s1)):
pylab.figure()
_compare_expvaluesubsystems(s1.values()[i], s2.values()[i],
show=False, **kwargs)
title = "%s vs. %s" % (s1.keys()[i], s2.keys()[i])
if hasattr(pylab, "suptitle"): # For old versions not available.
pylab.suptitle(title)
pylab.gcf().canvas.set_window_title(title)
if show:
pylab.show()
示例9: plot_prototypes
def plot_prototypes(self):
""" plots each of the components as a prototype (sum of fitted b-splines) and returns a dictionary of figures """
figs = {}
for h in np.unique(self.design.header):
fig = pl.figure()
splines = self.design.get(h)
if 'rate' in h:
pl.plot(np.sum(self.design.get(h)[:self.design.trial_length] * self.beta[self.design.getIndex(h)],1))
pl.title(h)
elif len(splines.shape) == 1 or (splines.shape[0] == 1):
pl.plot(np.sum(self.design.get(h) * self.beta[self.design.getIndex(h)],1),'o')
pl.title(h)
elif len(splines.shape) == 2:
pl.plot(np.sum(self.design.get(h) * self.beta[self.design.getIndex(h)],1))
pl.title(h)
elif len(splines.shape) == 3:
slices = np.zeros(splines.shape)
for (i, ind) in zip(range(splines.shape[0]),self.design.getIndex(h)):
slices[i,:,:] = splines[i,:,:] * self.beta[ind]
pl.imshow(slices.sum(axis=0),cmap='jet')
figs[h + '_sum'] = fig
fig = pl.figure()
for i in range(len(slices)):
pl.subplot(np.ceil(np.sqrt(slices.shape[0])),np.ceil(np.sqrt(slices.shape[0])),i+1)
pl.imshow(slices[i],vmin=np.percentile(slices,1),vmax=np.percentile(slices,99),cmap='jet')
pl.suptitle(h)
figs[h] = fig
else:
pl.plot(np.sum(self.design.get(h) * self.beta[self.design.getIndex(h)],1))
pl.title(h)
figs[h] = fig
return figs
示例10: ks_gof
def ks_gof(mcmc, samples, format="png"):
"""Runs ks_2samp test and plots Observed/Expected vs. Simulated/Expected"""
size = len(samples)
#Check for bedrock data
for sample in samples:
if isinstance(sample, BedrockSample):
size = len(samples)-1
#Set size and create grid
if size == 1:
fig = plt.figure(figsize=(10, 10))
else:
fig = plt.figure(figsize=(6, 10))
grid = ag.axes_grid.Grid(fig, 111, nrows_ncols = (size, 1), axes_pad = 1, share_x=False, share_y=False, label_mode = "all" )
j = 0
for sample in samples:
if isinstance(sample, DetritalSample):
#obs = mcmc.get_node("ObsAge_" + sample.name)
sim = mcmc.get_node("SimAge_" + sample.name)
exp = mcmc.get_node("ExpAge_" + sample.name)
d_simExp=[]
d_obsExp=[]
#import ipdb; ipdb.set_trace()
for i in range(len(exp.trace()[:,-1])):
D, P = sp.stats.ks_2samp(mcmc.trace(exp)[i,-1], mcmc.trace(sim)[i,-1])
d_simExp.append(D)
D, P = sp.stats.ks_2samp(mcmc.trace(exp)[i,-1], sample.ages)
d_obsExp.append(D)
#The test statistics generated from ks_2samp plot as a grid. The following adds
#random uniform noise for a better visual representation on the plot.
noise=(0.5/len(sample.ages))
for i in range(len(d_simExp)):
d_simExp[i] = d_simExp[i] + np.random.uniform(-noise, noise, 1)
d_obsExp[i] = d_obsExp[i] + np.random.uniform(-noise, noise, 1)
#Calculate p-value (The proportion of test statistics above the y=x line)
count=0
for i in range(len(d_simExp)):
if (d_simExp[i]>d_obsExp[i]):
count=count+1
count=float(count)
p_value=(count/len(d_simExp))
#Plot
grid[j].scatter(d_obsExp, d_simExp, color='gray', edgecolors='black')
grid[j].set_xlabel('Observed/Expected', fontsize='small')
grid[j].set_ylabel('Simulated/Expected', fontsize='small')
label = sample.name + ", " + "p-value="+"%f"%p_value
grid[j].set_title(label, fontsize='medium')
#Add a y=x line to plot
if (max(d_simExp)>=max(d_obsExp)):
grid[j].plot([0,max(d_simExp)],[0,max(d_simExp)], color='black')
else:
grid[j].plot([0,max(d_obsExp)],[0,max(d_obsExp)], color='black')
j+=1
plt.suptitle('Kolmogorov-Smirnov Statistics', fontsize='large')
fig.savefig("KS_test."+format)
示例11: expvaluecollection
def expvaluecollection(evc, show=True, **kwargs):
"""
Visualize a :class:`pycppqed.expvalues.ExpectationValueCollection`.
*Usage*
>>> import numpy as np
>>> T = np.linspace(0,10)
>>> d = (np.sin(T), np.cos(T))
>>> titles = ("<x>", "<y>")
>>> evc = pycppqed.expvalues.ExpectationValueCollection(d, T, titles)
>>> evc.plot()
*Arguments*
* *evc*
A :class:`pycppqed.expvalues.ExpectationValueCollection`.
* *show* (optional):
If True pylab.show() is called finally. This means a plotting
window will pop up automatically. (Default is True)
* Any other arguments that the pylab plotting command can use.
"""
if evc.subsystems:
import pylab
for sysname, data in evc.subsystems.iteritems():
pylab.figure()
_expvalues(data.evtrajectories, show=False, **kwargs)
if hasattr(pylab, "suptitle"): # For old versions not available.
pylab.suptitle(sysname)
pylab.gcf().canvas.set_window_title(sysname)
if show:
pylab.show()
else:
titles = ["(%s) %s" % (i, title) for i, title in enumerate(evc.titles)]
_expvalues(evc.evtrajectories, titles, show=show, **kwargs)
示例12: NeutralLinguagram
def NeutralLinguagram(self, M, savename, start=1):
fakeX = []
for i in range(len(M)):
xs = []
for j in range(1,33):
xs.append(j)
fakeX.append(xs)
x1 = array(fakeX)
y1 = array(M)
Z = []
for i in range(start, (len(M)+start)):
zs = []
for j in range(32):
zs.append(i)
Z.append(zs)
z1 = array(Z)
fig = p.figure()
ax = Axes3D(fig)
ax.plot_surface(z1, -x1, y1, rstride=1, cstride=1, cmap=cm.jet)
ax.view_init(90,-90)
p.suptitle(savename[:-4])
#p.show()
p.savefig(savename, format = 'png')
示例13: createCoefGraph
def createCoefGraph(data, nFig, lim, ymin):
plt.figure(nFig)
plt.suptitle('Coef')
nBase = data.shape[0]
nSubCols = nBase / 10
if nSubCols > 0:
nSubRows = nBase / nSubCols
else:
nSubRows = nBase
nSubCols = 1
# print data.shape
# サンプリング周波数とシフト幅によって式を変える必要あり
timeLine = [i * 1024 / 8000.0 for i in range(data.shape[1])]
# print len(timeLine)
for i in range(nBase):
plt.subplot(nSubRows, nSubCols, i + 1)
plt.tick_params(labelleft='off', labelbottom='off')
# FIXME: Arguments of X
# plt.plot(timeLine, data[i,:])
if lim:
plt.ylim(ymin=ymin)
plt.plot(timeLine, data[i,:])
# Beacuse I want to add lable in bottom, xlabel is declaration after loop.
plt.tick_params(labelleft='off', labelbottom="on")
plt.xlabel('time [ms]')
示例14: plot_multiplot_histogram
def plot_multiplot_histogram(data):
xcol=4
ycol=6
for index,attrib in enumerate(attribList):
byAttrib=get_byAttrib(data,attrib)
P.suptitle('Attribute Histograms')
ax = P.subplot(xcol,ycol,index+1)
plot_histogram(byAttrib,attrib=attribDict[attrib],bool_labels=False)
for item in ax.get_xticklabels():
item.set_fontsize(0)
for item in ax.get_yticklabels():
item.set_fontsize(0)
if index % ycol == 0:
P.ylabel('Probability')
for item in ax.get_yticklabels():
item.set_fontsize(8)
if index > (xcol-1)*ycol-1:
P.xlabel('Rank')
for item in ax.get_xticklabels():
item.set_fontsize(8)
P.xlim([1,24])
P.ylim([0,0.25])
ax.yaxis.label.set_size(10)
ax.xaxis.label.set_size(10)
if np.sum(byAttrib[0:7,1])>2*np.sum(byAttrib[16:23,1]):
P.text(20,0.20,'+')
elif np.sum(byAttrib[16:23,1])>2*np.sum(byAttrib[0:7,1]):
P.text(20,0.20,'-')
P.subplots_adjust(hspace=.50)
P.subplots_adjust(wspace=.50)
P.subplots_adjust(bottom=0.1)
示例15: check_negative_offsets
def check_negative_offsets(test_arcs):
d = 0.4
# Offset inward then outward would normally erode sharp features, but we can use a positive offset to generate a shape with no sharp features
outer = offset_arcs(test_arcs, d*1.5) # Ensure features big enough to not disappear if we inset/offset again
inset = offset_arcs(outer, -d)
reset = offset_arcs(inset, d)
outer_area = circle_arc_area(outer)
inset_area = circle_arc_area(inset)
reset_area = circle_arc_area(reset)
assert inset_area < outer_area # Offset by negative amount should reduce area
if not fuzzy_arcs_equal(outer, reset, 2):
if 0:
import pylab
area_error = abs(outer_area - reset_area)
pylab.suptitle("Offset: %s, Area error:%s" % (sub_d, area_error))
print "outer_area:",outer_area
print "inset_area:",inset_area
print "reset_area:",reset_area
subplot_arcs(outer, 131, "outer", full=False)
subplot_arcs(inset, 132, "inset", full=False)
subplot_arcs(reset, 133, "reset", full=False)
pylab.show()
assert False
# Check that a large negative offset leaves nothing
empty_arcs = offset_arcs(test_arcs, -100.)
assert len(empty_arcs) == 0