本文整理汇总了Python中pylab.subplots_adjust函数的典型用法代码示例。如果您正苦于以下问题:Python subplots_adjust函数的具体用法?Python subplots_adjust怎么用?Python subplots_adjust使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了subplots_adjust函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_variable_importance
def plot_variable_importance(feature_importance, names_cols, save_name, save):
"""Show Variable importance graph."""
# scale by max importance first 20 variables in column names
feature_importance = feature_importance / feature_importance.max()
sorted_idx = np.argsort(feature_importance)[::-1][:20]
barPos = np.arange(sorted_idx.shape[0]) + .8
barPos = barPos[::-1]
#plot.figure(num=None, facecolor='w', edgecolor='r')
plot.figure(num=None, facecolor='w')
plot.barh(barPos, feature_importance[sorted_idx]*100, align='center')
plot.yticks(barPos, names_cols[sorted_idx])
plot.xticks(np.arange(0, 120, 20), \
['0 %', '20 %', '40 %', '60 %', '80 %', '100 %'])
plot.margins(0.02)
plot.subplots_adjust(bottom=0.15)
plot.title('Variable Importance')
if save:
plot.savefig(save_name, bbox_inches='tight', dpi = 300)
plot.close("all")
else:
plot.show()
示例2: command
def command(args):
from pylab import bar, yticks, subplots_adjust, show
from numpy import arange
import sr.tools.bom.bom as bom
import sr.tools.bom.parts_db as parts_db
db = parts_db.get_db()
m = bom.MultiBoardBom(db)
m.load_boards_args(args.arg)
m.prime_cache()
prices = []
for srcode, pg in m.items():
if srcode == "sr-nothing":
continue
prices.append((srcode, pg.get_price()))
prices.sort(key=lambda x: x[1])
bar(0, 0.8, bottom=range(0, len(prices)), width=[x[1] for x in prices],
orientation='horizontal')
yticks(arange(0, len(prices)) + 0.4, [x[0] for x in prices])
subplots_adjust(left=0.35)
show()
示例3: savePlotSequence
def savePlotSequence(fileBase,stride=1,imgRatio=(5,7),title=None,titleFrames=20,lastFrames=30):
'''Save sequence of plots, each plot corresponding to one line in history. It is especially meant to be used for :yref:`yade.utils.makeVideo`.
:param stride: only consider every stride-th line of history (default creates one frame per each line)
:param title: Create title frame, where lines of title are separated with newlines (``\\n``) and optional subtitle is separated from title by double newline.
:param int titleFrames: Create this number of frames with title (by repeating its filename), determines how long the title will stand in the movie.
:param int lastFrames: Repeat the last frame this number of times, so that the movie does not end abruptly.
:return: List of filenames with consecutive frames.
'''
createPlots(subPlots=True,scatterSize=60,wider=True)
sqrtFigs=math.sqrt(len(plots))
pylab.gcf().set_size_inches(8*sqrtFigs,5*sqrtFigs) # better readable
pylab.subplots_adjust(left=.05,right=.95,bottom=.05,top=.95) # make it more compact
if len(plots)==1 and plots[plots.keys()[0]]==None: # only pure snapshot is there
pylab.gcf().set_size_inches(5,5)
pylab.subplots_adjust(left=0,right=1,bottom=0,top=1)
#if not data.keys(): raise ValueError("plot.data is empty.")
pltLen=max(len(data[data.keys()[0]]) if data else 0,len(imgData[imgData.keys()[0]]) if imgData else 0)
if pltLen==0: raise ValueError("Both plot.data and plot.imgData are empty.")
global current, currLineRefs
ret=[]
print 'Saving %d plot frames, it can take a while...'%(pltLen)
for i,n in enumerate(range(0,pltLen,stride)):
current=n
for l in currLineRefs: l.update()
out=fileBase+'-%03d.png'%i
pylab.gcf().savefig(out)
ret.append(out)
if len(ret)==0: raise RuntimeError("No images created?!")
if title:
titleImgName=fileBase+'-title.png'
createTitleFrame(titleImgName,Image.open(ret[-1]).size,title)
ret=titleFrames*[titleImgName]+ret
if lastFrames>1: ret+=(lastFrames-1)*[ret[-1]]
return ret
示例4: plot_vector_diff_F160W
def plot_vector_diff_F160W():
"""
Using the xym2mat analysis on the F160W filter in the 2010 data set,
plot up the positional offset vectors for each reference star in
each star list relative to the average list. This should show
us if there are systematic problems with the distortion solution
or PSF variations.
"""
x, y, m, xe, ye, me, cnt = load_catalog()
dx = x - x[0]
dy = y - y[0]
dr = np.hypot(dx, dy)
py.clf()
py.subplots_adjust(left=0.05, bottom=0.05, right=0.95, top=0.95)
for ii in range(1, x.shape[0]):
idx = np.where((x[ii,:] != 0) & (y[ii,:] != 0) & (dr[ii,:] < 0.1) &
(xe < 0.05) & (ye < 0.05))[0]
py.clf()
q = py.quiver(x[0,idx], y[0,idx], dx[ii, idx], dy[ii, idx], scale=1.0)
py.quiverkey(q, 0.9, 0.9, 0.03333, label='2 mas', color='red')
py.title('{0} stars in list {1}'.format(len(idx), ii))
py.xlim(0, 4500)
py.ylim(0, 4500)
foo = input('Continue?')
if foo == 'q' or foo == 'Q':
break
示例5: draw
def draw(self):
print self.edgeno
pos = 0
dy = 8
edgeno = self.edgeno
edge = self.edges[edgeno]
edgeprev = self.edges[edgeno-1]
p = np.round(edge["top"](1024))
top = min(p+2*dy, 2048)
bot = min(p-2*dy, 2048)
self.cutout = self.flat[1][bot:top,:].copy()
pl.figure(1)
pl.clf()
start = 0
dy = 512
for i in xrange(2048/dy):
pl.subplot(2048/dy,1,i+1)
pl.xlim(start, start+dy)
if i == 0: pl.title("edge %i] %s|%s" % (edgeno,
edgeprev["Target_Name"], edge["Target_Name"]))
pl.subplots_adjust(left=.07,right=.99,bottom=.05,top=.95)
pl.imshow(self.flat[1][bot:top,start:start+dy], extent=(start,
start+dy, bot, top), cmap='Greys', vmin=2000, vmax=6000)
pix = np.arange(start, start+dy)
pl.plot(pix, edge["top"](pix), 'r', linewidth=1)
pl.plot(pix, edgeprev["bottom"](pix), 'r', linewidth=1)
pl.plot(edge["xposs_top"], edge["yposs_top"], 'o')
pl.plot(edgeprev["xposs_bot"], edgeprev["yposs_bot"], 'o')
hpp = edge["hpps"]
pl.axvline(hpp[0],ymax=.5, color='blue', linewidth=5)
pl.axvline(hpp[1],ymax=.5, color='red', linewidth=5)
hpp = edgeprev["hpps"]
pl.axvline(hpp[0],ymin=.5,color='blue', linewidth=5)
pl.axvline(hpp[1],ymin=.5,color='red', linewidth=5)
if False:
L = top-bot
Lx = len(edge["xposs"])
for i in xrange(Lx):
xp = edge["xposs"][i]
frac1 = (edge["top"](xp)-bot-1)/L
pl.axvline(xp,ymin=frac1)
for xp in edgeprev["xposs"]:
frac2 = (edgeprev["bottom"](xp)-bot)/L
pl.axvline(xp,ymax=frac2)
start += dy
示例6: plot_bases
def plot_bases(self, autoscale=True, stampsize=None):
import pylab as plt
N = len(self.psfbases)
cols = int(np.ceil(np.sqrt(N)))
rows = int(np.ceil(N / float(cols)))
plt.clf()
plt.subplots_adjust(hspace=0, wspace=0)
cut = 0
if stampsize is not None:
H, W = self.shape
assert H == W
cut = max(0, (H - stampsize) / 2)
ima = dict(interpolation="nearest", origin="lower")
if autoscale:
mx = self.psfbases.max()
ima.update(vmin=-mx, vmax=mx)
nil, xpows, ypows = self.polynomials(0.0, 0.0, powers=True)
for i, (xp, yp, b) in enumerate(zip(xpows, ypows, self.psfbases)):
plt.subplot(rows, cols, i + 1)
if cut > 0:
b = b[cut:-cut, cut:-cut]
if autoscale:
plt.imshow(b, **ima)
else:
mx = np.abs(b).max()
plt.imshow(b, vmin=-mx, vmax=mx, **ima)
plt.xticks([])
plt.yticks([])
plt.title("x^%i y^%i" % (xp, yp))
plt.suptitle("PsfEx eigen-bases")
示例7: walker_plot
def walker_plot(samples, nwalkers, limit):
s = samples.reshape(nwalkers, -1, 4)
s = s[:, :limit, :]
fig = P.figure(figsize=(8, 10))
ax1 = P.subplot(4, 1, 1)
ax2 = P.subplot(4, 1, 2)
ax3 = P.subplot(4, 1, 3)
ax4 = P.subplot(4, 1, 4)
for n in range(len(s)):
ax1.plot(s[n, :, 0], "k")
ax2.plot(s[n, :, 1], "k")
ax3.plot(s[n, :, 2], "k")
ax4.plot(s[n, :, 3], "k")
ax1.tick_params(axis="x", labelbottom="off")
ax2.tick_params(axis="x", labelbottom="off")
ax3.tick_params(axis="x", labelbottom="off")
ax4.set_xlabel(r"step number")
ax1.set_ylabel(r"$t_{smooth}$")
ax2.set_ylabel(r"$\tau_{smooth}$")
ax3.set_ylabel(r"$t_{disc}$")
ax4.set_ylabel(r"$\tau_{disc}$")
P.subplots_adjust(hspace=0.1)
save_fig = (
"/Users/becky/Projects/Green-Valley-Project/bayesian/find_t_tau/gv/not_clean/walkers_steps_all_"
+ str(time.strftime("%H_%M_%d_%m_%y"))
+ ".pdf"
)
fig.savefig(save_fig)
return fig
示例8: write_rgb
def write_rgb():
#g,r,z = [fitsio.read('detmap-%s.fits' % band) for band in 'grz']
g,r,z = [fitsio.read('coadd-%s.fits' % band) for band in 'grz']
plt.figure(figsize=(10,10))
plt.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95)
plt.clf()
for (im1,cc),scale in zip([(g,'b'),(r,'g'),(z,'r')],
[2.0, 1.2, 0.4]):
im = im1 * scale
im = im[im != 0]
plt.hist(im.ravel(), histtype='step', color=cc,
range=[np.percentile(im, p) for p in (1,98)], bins=50)
ps.savefig()
#rgb = get_rgb_image(g,r,z, alpha=0.8, m=0.02)
#rgb = get_rgb_image(g,r,z, alpha=16., m=0.005, m2=0.002,
#rgb = get_rgb_image(g,r,z, alpha=32., m=0.01, m2=0.002,
rgb = get_rgb_image(g,r,z, alpha=8., m=0.0, m2=0.0,
scale_g = 2.,
scale_r = 1.1,
scale_z = 0.5,
Q = 10)
#for im in g,r,z:
# mn,mx = [np.percentile(im, p) for p in [20,99]]
# print 'mn,mx:', mn,mx
plt.clf()
plt.imshow(rgb, interpolation='nearest', origin='lower')
ps.savefig()
fitsio.write('rgb.fits', rgb)
示例9: corner_plot
def corner_plot(s, labels):
x, y = s[:,0], s[:,1]
fig = P.figure(figsize=(10,10))
ax2 = P.subplot(223)
ax2.set_xlabel(labels[0])
ax2.set_ylabel(labels[1])
im = triangle.histo2d(x, y, ax=ax2, extent=[[0, 13.807108309208775],[0, 3.0]])
[l.set_rotation(45) for l in ax2.get_xticklabels()]
[j.set_rotation(45) for j in ax2.get_yticklabels()]
ax1 = P.subplot(221, xlim=[0, 13.807108309208775])
ax1.tick_params(axis='x', labelbottom='off')
ax1.tick_params(axis='y', labelleft='off')
ax1.hist(x, bins=50, histtype='step', color='k', range=(0, 13.807108309208775))
ax3 = P.subplot(224)
ax3.tick_params(axis='x', labelbottom='off')
ax3.tick_params(axis='y', labelleft='off')
ax3.hist(y, bins=50, orientation='horizontal', histtype='step',color='k', range=(0,3))
P.subplots_adjust(wspace=0.05)
P.subplots_adjust(hspace=0.05)
cbar_ax = fig.add_axes([0.55, 0.565, 0.02, 0.405])
cb = fig.colorbar(im, cax = cbar_ax)
cb.solids.set_edgecolor('face')
cb.set_label(r'predicted SFR $[M_{\odot} yr^{-1}]$', labelpad = 20, fontsize=16)
P.tight_layout()
return fig
示例10: plot_stable_features
def plot_stable_features(X_train,y_train,featnames,**kwargs):
from sklearn.linear_model import LassoLarsCV,RandomizedLasso
n_resampling = kwargs.pop('n_resampling',200)
n_jobs = kwargs.pop('n_jobs',-1)
with warnings.catch_warnings():
warnings.simplefilter('ignore', UserWarning)
# estimate alphas via xvalidation
lars_cv = LassoLarsCV(cv=6,n_jobs=n_jobs).fit(X_train,y_train)
alphas = np.linspace(lars_cv.alphas_[0], .1 * lars_cv.alphas_[0], 6)
clf = RandomizedLasso(alpha=alphas, random_state=42, n_jobs=n_jobs,
n_resampling=n_resampling)
clf.fit(X_train,y_train)
importances = clf.scores_
indices = np.argsort(importances)[::-1]
pl.bar(range(len(featnames)), importances[indices],
color="r", align="center")
pl.xticks(np.arange(len(featnames))+0.5,featnames[indices],
rotation=45,horizontalalignment='right')
pl.xlim(-0.5,len(featnames)-0.5)
pl.subplots_adjust(bottom=0.2)
pl.ylim(0,np.max(importances)*1.01)
pl.ylabel('Selection frequency (%) for %d resamplings '%n_resampling)
pl.title("Stability Selection: Selection Frequencies")
示例11: plot_importances
def plot_importances(clf,featnames,outfile,**kwargs):
pl.figure(figsize=(16,4))
featnames = np.array(featnames)
importances = clf.feature_importances_
imp_std = np.std([tree.feature_importances_ for tree in clf.estimators_],
axis=0)
indices = np.argsort(importances)[::-1]
#for featname in featnames[indices]:
# print featname
trunc_featnames = featnames[indices]
trunc_featnames = trunc_featnames[0:24]
trunc_importances = importances[indices]
trunc_importances = trunc_importances[0:24]
trunc_imp_std = imp_std[indices]
trunc_imp_std = trunc_imp_std[0:24]
pl.bar(range(len(trunc_featnames)), trunc_importances,
color="r", yerr=trunc_imp_std, align="center")
pl.xticks(np.arange(len(trunc_featnames))+0.5,trunc_featnames,rotation=45,
horizontalalignment='right')
pl.xlim(-0.5,len(trunc_featnames)-0.5)
pl.ylim(0,np.max(trunc_importances+trunc_imp_std)*1.01)
# pl.bar(range(len(featnames)), importances[indices],
# color="r", yerr=imp_std[indices], align="center")
# pl.xticks(np.arange(len(featnames))+0.5,featnames[indices],rotation=45,
# horizontalalignment='right')
# pl.xlim(-0.5,len(featnames)-0.5)
# pl.ylim(0,np.max(importances+imp_std)*1.01)
pl.subplots_adjust(bottom=0.2)
pl.show()
示例12: plot_cluster_context
def plot_cluster_context(sizes, densities, dir, name=None, k=None, suffix="png"):
"""
so many conditionals!
"""
print("plot_cluster_context(): plotting", name)
if name is None:
K = len(sizes)
fn = "{}/clusters_{:04d}.{}".format(dir, K, suffix)
else:
fn = "{}/{}_context.{}".format(dir, name, suffix)
if os.path.exists(fn):
print("plot_cluster_context(): {} exists already".format(fn))
return
if k is None:
fig = plt.figure(figsize=(6,6))
plt.subplots_adjust(left=0.15, right=0.97, bottom=0.15, top=0.97)
ms = 7.5
else:
fig = plt.figure(figsize=(4,4))
plt.subplots_adjust(left=0.2, right=0.96, bottom=0.2, top=0.96)
ms = 5.0
plt.clf()
if name is not None and k is None:
plt.savefig(fn)
print("plot_cluster_context(): wrote", fn)
return
_clusterplot(sizes, densities, k, ms=ms)
_clusterlims(sizes, densities)
plt.ylabel("cluster abundance-space density")
plt.xlabel("number in abundance-space cluster")
plt.loglog()
[l.set_rotation(45) for l in plt.gca().get_xticklabels()]
[l.set_rotation(45) for l in plt.gca().get_yticklabels()]
plt.savefig(fn)
print("plot_cluster_context(): wrote", fn)
示例13: create_fig
def create_fig(self):
print "Creating fig..."
self.fig_size = (14, 10)
self.fig = pylab.figure(figsize=self.fig_size)
pylab.subplots_adjust(hspace=0.4)
pylab.subplots_adjust(wspace=0.35)
return self.fig
示例14: drawCity
def drawCity(self):
"""
作图
:return:
"""
pl.title("pm25 / time " + str(self.numMonitors) + "_monitors")# give plot a title
pl.xlabel('time')# make axis labels
pl.ylabel('pm2.5')
self.fill_cityPm25List()
for monitorStr in self.cityPm25List:
data = np.loadtxt(StringIO(monitorStr), dtype=np.dtype([("t", "S13"),("v", float)]))
datestr = np.char.replace(data["t"], "T", " ")
t = pl.datestr2num(datestr)
v = data["v"]
pl.plot_date(t, v, fmt="-o")
pl.subplots_adjust(bottom=0.3)
# pl.legend(loc=4)#指定legend的位置,读者可以自己help它的用法
ax = pl.gca()
ax.fmt_xdata = pl.DateFormatter('%Y-%m-%d %H:%M:%S')
pl.xticks(rotation=70)
# pl.xticks(t, datestr) # 如果以数据点为刻度,则注释掉这一行
ax.xaxis.set_major_formatter(pl.DateFormatter('%Y-%m-%d %H:%M'))
pl.grid()
pl.show()# show the plot on the screen
示例15: gui_repr
def gui_repr(self):
"""Generate a GUI to represent the sentence alignments
"""
if __pylab_loaded__:
fig_width = max(len(self.text_e), len(self.text_f)) + 1
fig_height = 3
pylab.figure(figsize=(fig_width*0.8, fig_height*0.8), facecolor='w')
pylab.box(on=False)
pylab.subplots_adjust(left=0, right=1, bottom=0, top=1)
pylab.xlim(-1, fig_width - 1)
pylab.ylim(0, fig_height)
pylab.xticks([])
pylab.yticks([])
e = [0 for _ in xrange(len(self.text_e))]
f = [0 for _ in xrange(len(self.text_f))]
for (i, j) in self.align:
e[i] = 1
f[j] = 1
# draw the middle line
pylab.arrow(i, 2, j - i, -1, color='r')
for i in xrange(len(e)):
# draw e side line
pylab.text(i, 2.5, self.text_e[i], ha = 'center', va = 'center',
rotation=30)
if e[i] == 1:
pylab.arrow(i, 2.5, 0, -0.5, color='r', alpha=0.3, lw=2)
for i in xrange(len(f)):
# draw f side line
pylab.text(i, 0.5, self.text_f[i], ha = 'center', va = 'center',
rotation=30)
if f[i] == 1:
pylab.arrow(i, 0.5, 0, 0.5, color='r', alpha=0.3, lw=2)
pylab.draw()