本文整理汇总了Python中pylab.stem函数的典型用法代码示例。如果您正苦于以下问题:Python stem函数的具体用法?Python stem怎么用?Python stem使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了stem函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot
def plot(self, marker='o', color='red', m=0, M=6000):
"""Plots the position / height of the peaks in the well
.. plot::
:include-source:
from fragment_analyser import Line, fa_data
l = Line(fa_data("alternate/peaktable.csv"))
well = l.wells[0]
well.plot()
"""
import pylab
if len(self.df) == 0:
print("Nothing to plot (no peaks)")
return
x = self.df['Size (bp)'].astype(float).values
y = self.df['RFU'].astype(float).values
pylab.stem(x, y, marker=marker, color=color)
pylab.semilogx()
pylab.xlim([1, M])
pylab.ylim([0, max(y)*1.2])
pylab.grid(True)
pylab.xlabel("size (bp)")
pylab.ylabel("RFU")
return x, y
示例2: plot_weights
def plot_weights(self):
import pylab
x, w = zip(*self.distribution)
pylab.stem(x, 100*numpy.array(w))
pylab.title('Weight distribution')
pylab.xlabel(self.P.name)
pylab.ylabel('Percentage')
示例3: display_fit
def display_fit(xs, target, method, color=None, acronym=None, xmax=None, linewidth=2):
if not hasattr(method, "__iter__"):
method = (method,)
if not color is None:
color = (color,)
if not acronym is None:
acronym = (acronym,)
if not xs.shape[0] == 1:
raise ValueError("univariate data expected")
if xmax == None:
xmax = int(np.max(np.abs(xs.squeeze()))) + 1
x = np.linspace(-xmax, xmax, 2 * xmax / 0.01)
x = np.reshape(x, (1, x.size))
fits = [m.fit(x) for m in method]
if color is None:
for fit in fits:
plt.plot(x.squeeze(), fit, linewidth=linewidth)
else:
for fit, col in zip(fits, color):
plt.plot(x.squeeze(), fit, col, linewidth=linewidth)
if not acronym is None:
plt.legend(acronym)
target_xs = np.exp(target(xs.squeeze()))
target_x = np.exp(target(x.squeeze()))
plt.stem(xs.squeeze(), target_xs, linefmt="k-", markerfmt="ko", basefmt="k-")
plt.plot(x.squeeze(), target_x, "k")
x0, x1, y0, y1 = plt.axis()
plt.plot((x0, x1), (0, 0), "k")
plt.show()
示例4: matlab_fourier_anal
def matlab_fourier_anal(data, sample_rate = 1.0):
n = data.shape[0]
t = np.arange(n)
P.figure()
P.plot(t/sample_rate,data)
P.xlabel('Time Units')
P.ylabel('Data Magnitude')
Y = fftpack.fft(data);
freqs = np.arange(n/2.0) * sample_rate / n
power = np.abs(Y[:n/2.0])
P.figure()
markerline, stemlines, baseline = P.stem(freqs, power, '--')
P.setp(markerline, 'markerfacecolor', 'b')
# P.setp(baseline, 'color','r', 'linewidth', 2)
P.xlabel('Cycles/ Unit Time')
P.ylabel('Power')
P.title('Periodogram')
period = 1. / freqs
k = np.arange(50)
f = k / float(n)
power2 = power[k];
P.figure()
markerline, stemlines, baseline = P.stem(f, power2, '--')
P.setp(markerline, 'markerfacecolor', 'b')
P.setp(baseline, 'color','r', 'linewidth', 2)
P.xlabel('Unit Time / Cycle')
P.ylabel('Power')
P.title('Periodogram: First 50 periods')
示例5: plot_reflection
def plot_reflection(self):
from pylab import stem, title, xlabel, ylabel
if self.reflection is not None:
stem(list(range(0, len(self.reflection))), abs(self.reflection))
title('Reflection coefficient evolution')
xlabel('Order')
ylabel('Reflection Coefficient absolute values')
else:
logging.warning("Reflection coefficients not available or not yet computed.")
示例6: decode_symbols
def decode_symbols(r, i, corr_index, r0, i0, Nbits, fs=48000, baud=300,
plot=False):
Ns = fs/baud
r = r[corr_index:]
i = i[corr_index:]
r0 = r0[corr_index:]
i0 = i0[corr_index:]
#print len(r)
#print len(r0)
#print len(i0)
r = r/np.max(r)*2.2 #change this 2 depending on the input amplitude
i = i/np.max(i)*2.2 #change this 2 depending on the input amplitude
if plot:
fig = plt.figure(figsize = (16,4))
plt.plot(2*r0)
plt.plot(r)
plt.title('Real part, raw input and normalized')
fig = plt.figure(figsize = (16,4))
plt.plot(2*i0)
plt.plot(i)
plt.title('Imaginary part, raw input and normalized')
####Decode
idx = np.r_[Ns/2:len(r):Ns]
#r = np.around(r)
#i = np.around(i)
r_dec = np.around(r[idx])
i_dec = np.around(i[idx])
if plot:
fig = plt.figure(figsize = (16,4))
plt.plot(2*r0)
plt.plot(r)
plt.plot(np.around(r))
plt.stem(idx, r_dec)
plt.title('Real part, decoded by sampling values as indicated')
fig = plt.figure(figsize = (16,4))
plt.plot(2*i0)
plt.plot(i)
plt.plot(np.around(i))
plt.stem(idx, i_dec)
plt.title('Imaginary part, decoded by sampling values as indicated')
fig = plt.figure(figsize = (8,8))
plt.scatter(r0*2, i0*2, c='r')
plt.scatter(r_dec, i_dec, c='g')
plt.title('Constellation of input message vs decoded symbols')
return r_dec + 1j*i_dec
示例7: print_spectrum
def print_spectrum(spectrum, filename):
x = spectrum.mz
y = spectrum.intensity
pylab.stem(x, y, markerfmt='b,')
pylab.xlabel('m/z')
pylab.ylabel('Transformed intensity')
pylab.grid()
pylab.xlim(0.95*min(x), 1.05*max(x))
pylab.savefig(filename)
示例8: plot_reflection
def plot_reflection(self):
from pylab import stem, title, xlabel, ylabel
if self.reflection is not None:
stem(list(range(0, len(self.reflection))), abs(self.reflection))
title('Reflection coefficient evolution')
xlabel('Order')
ylabel('Reflection Coefficient absolute values')
else:
import warnings
warnings.warn("""Reflection coefficients not available with
the current method.""")
示例9: plot_spectra
def plot_spectra(self):
""" Plots the original spectrum and the sum of cisoids.
"""
import pylab as plt
plt.plot(self.psd[0], self.psd[1])
freqs = [el[0] for el in self.soc]
ampls = [el[1] for el in self.soc]
plt.stem(freqs, ampls)
plt.xlabel(r'$f$ in Hz')
plt.ylabel(r'$S(f)$')
plt.show()
示例10: nzcols_hist
def nzcols_hist(P,file=None):
if file==None: pylab.ion()
else: pylab.ioff()
nzcols = +P.nzcols
Nmax = max(nzcols)
y = matrix(0,(Nmax,1))
for n in nzcols:
y[n-1] += 1
y = sparse(y)
f = pylab.figure(); f.clf()
pylab.stem(y.I+1,y.V)#; pylab.xlim(-1,Nmax+2)
if file: pylab.savefig(P._pname + "_nzcols_hist.png")
示例11: fourier_analysis
def fourier_analysis(sig, time_step = 1.0, top_freqs = 5, zoomed_num = 15):
time_vec = np.arange(0, len(sig), time_step)
sample_freq = fftpack.fftfreq(sig.size, d=time_step)
sig_fft = fftpack.fft(sig)
# Only take first half of sampling frequency
pidxs = np.where(sample_freq > 0)
freqs, power = sample_freq[pidxs], np.abs(sig_fft)[pidxs]
# plot with zoomed in sub plot
P.figure()
P.plot(freqs, power)
P.ylabel('Power')
P.xlabel('Frequency [Hz]')
axes = P.axes([0.3, 0.3, 0.5, 0.5])
P.title('Peak frequency')
P.stem(freqs[:zoomed_num], power[:zoomed_num])
#P.setp(axes, yticks=[])
#P.savefig('source/fftpack-frequency.png')
# Find top x frequencies to use in reconstruction
full_sort_idx = power.argsort()
find_idx = full_sort_idx >= top_freqs
sorted_power = power[sort_idx][::-1] # Sort decending
component_freqs = freqs[sort_idx[:top_freqs]]
# copy fft
reduced_sig_fft = sig_fft.copy()
# set all values not in component freqs to 0
L = np.array(reduced_sig_fft, dtype = bool)
L[sort_idx[:top_freqs]] = False
reduced_sig_fft[L] = 0
# Reconstruct signal
reconstruct_sig = fftpack.ifft(reduced_sig_fft)
# Plot original and reconstructed signal
P.figure()
P.plot(time_vec, sig)
P.plot(time_vec, reconstruct_sig, linewidth=2)
P.ylabel('Amplitude')
P.xlabel('Time [s]')
return sig_fft, reduced_sig_fft, reconstruct_sig, freqs, power, component_freqs
示例12: demo
def demo(text=None):
from nltk.corpus import brown
import pylab
tt=TextTilingTokenizer(demo_mode=True)
if text is None: text=brown.raw()[:10000]
s,ss,d,b=tt.tokenize(text)
pylab.xlabel("Sentence Gap index")
pylab.ylabel("Gap Scores")
pylab.plot(range(len(s)), s, label="Gap Scores")
pylab.plot(range(len(ss)), ss, label="Smoothed Gap scores")
pylab.plot(range(len(d)), d, label="Depth scores")
pylab.stem(range(len(b)),b)
pylab.legend()
pylab.show()
示例13: plot_inflections
def plot_inflections(x,y):
"""
Plot inflection points in the spline curve.
"""
m = (y[2:]-y[:-2])/(x[2:]-x[:-2])
b = y[2:] - m*x[2:]
delta = y[1:-1] - (m*x[1:-1] + b)
t = linspace(x[0],x[-1],400)
import pylab
ax1=pylab.subplot(211)
pylab.plot(t,monospline(x,y,t),'-b',x,y,'ob')
pylab.subplot(212, sharex=ax1)
delta_x = x[1:-1]
pylab.stem(delta_x,delta)
pylab.plot(delta_x[delta<0],delta[delta<0],'og')
pylab.axis([x[0],x[-1],min(min(delta),0),max(max(delta),0)])
示例14: impz
def impz(b,a=1):
impulse = np.repeat(0.,50); impulse[0] =1.
x = np.arange(0,50)
response = signal.lfilter(b,a,impulse)
pl.subplot(211)
pl.stem(x, response)
pl.ylabel('Amplitude')
pl.xlabel(r'n (samples)')
pl.title(r'Impulse response')
pl.subplot(212)
step = np.cumsum(response)
pl.stem(x, step)
pl.ylabel('Amplitude')
pl.xlabel(r'n (samples)')
pl.title(r'Step response')
pl.subplots_adjust(hspace=0.5)
示例15: hist_mtx
def hist_mtx(mtx, tstr=''):
"""
Given a piano-roll matrix, 128 MIDI piches x beats, plot the pitch class histogram
"""
i_min, i_max = np.where(mtx.mean(1))[0][[0,-1]]
P.figure(figsize=(14.5,8))
P.stem(np.arange(i_max+1-i_min),mtx[i_min:i_max+1,:].sum(1))
ttl = 'Note Frequency'
if tstr: ttl+=': '+tstr
P.title(ttl,fontsize=16)
t=P.xticks(np.arange(0,i_max+1-i_min,3),pc_labels[i_min:i_max+1:3],fontsize=14)
P.xlabel('Pitch Class', fontsize=14)
P.ylabel('Frequency', fontsize=14)
ax = P.axis()
P.axis(xmin=-0.5)
P.grid()