本文整理汇总了Python中pylab.show函数的典型用法代码示例。如果您正苦于以下问题:Python show函数的具体用法?Python show怎么用?Python show使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了show函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
def main():
SAMPLE_NUM = 10
degree = 9
x, y = sin_wgn_sample(SAMPLE_NUM)
fig = pylab.figure(1)
pylab.grid(True)
pylab.xlabel('x')
pylab.ylabel('y')
pylab.axis([-0.1,1.1,-1.5,1.5])
# sin(x) + noise
# markeredgewidth mew
# markeredgecolor mec
# markerfacecolor mfc
# markersize ms
# linewidth lw
# linestyle ls
pylab.plot(x, y,'bo',mew=2,mec='b',mfc='none',ms=8)
# sin(x)
x2 = linspace(0, 1, 1000)
pylab.plot(x2,sin(2*x2*pi),'#00FF00',lw=2,label='$y = \sin(x)$')
# polynomial fit
reg = exp(-18)
w = curve_poly_fit(x, y, degree,reg) #w = polyfit(x, y, 3)
po = poly1d(w)
xx = linspace(0, 1, 1000)
pylab.plot(xx, po(xx),'-r',label='$M = 9, \ln\lambda = -18$',lw=2)
pylab.legend()
pylab.show()
fig.savefig("poly_fit9_10_reg.pdf")
示例2: simulationWithDrug
def simulationWithDrug():
"""
Runs simulations and plots graphs for problem 4.
Instantiates a patient, runs a simulation for 150 timesteps, adds
guttagonol, and runs the simulation for an additional 150 timesteps.
total virus population vs. time and guttagonol-resistant virus population
vs. time are plotted
"""
maxBirthProb = .1
clearProb = .05
resistances = {'guttagonal': False}
mutProb = .005
total = [100]
g = [0]
badVirus = ResistantVirus(maxBirthProb, clearProb, resistances, mutProb)
viruses = [badVirus]*total[0]
maxPop = 1000
Bob = Patient(viruses, maxPop)
for i in range(150):
Bob.update()
gVirus = 0
for v in Bob.viruses:
if v.isResistantTo('guttagonal'):
gVirus += 1
#print "g = ", gVirus
#print "t = ", len(Bob.viruses)
#print
g += [gVirus]
total += [len(Bob.viruses)]
Bob.addPrescription('guttagonal')
for i in range(150):
Bob.update()
gVirus = 0
for v in Bob.viruses:
if v.isResistantTo('guttagonal'):
gVirus += 1
g += [gVirus]
total += [len(Bob.viruses)]
pylab.title("Number of Viruses with Different Resistances to Guttagonal")
pylab.xlabel("Number of Timesteps")
pylab.ylabel("Number of Viruses")
pylab.plot(g, '-r', label = 'Resistant')
pylab.plot(total, '-b', label = 'Total')
pylab.legend(loc = 'lower right')
pylab.show()
示例3: embed_two_dimensions
def embed_two_dimensions(data, vectorizer, size=10, n_components=5, colormap='YlOrRd'):
if hasattr(data, '__iter__'):
iterable = data
else:
raise Exception('ERROR: Input must be iterable')
import itertools
iterable_1, iterable_2 = itertools.tee(iterable)
# get labels
labels = []
for graph in iterable_2:
label = graph.graph.get('id', None)
if label:
labels.append(label)
# transform iterable into sparse vectors
data_matrix = vectorizer.transform(iterable_1)
# embed high dimensional sparse vectors in 2D
from sklearn import metrics
distance_matrix = metrics.pairwise.pairwise_distances(data_matrix)
from sklearn.manifold import MDS
feature_map = MDS(n_components=n_components, dissimilarity='precomputed')
explicit_data_matrix = feature_map.fit_transform(distance_matrix)
from sklearn.decomposition import TruncatedSVD
pca = TruncatedSVD(n_components=2)
low_dimension_data_matrix = pca.fit_transform(explicit_data_matrix)
plt.figure(figsize=(size, size))
embed_dat_matrix_two_dimensions(low_dimension_data_matrix, labels=labels, density_colormap=colormap)
plt.show()
示例4: Xtest3
def Xtest3(self):
"""
Test from Kate Marvel
As the following code snippet demonstrates, regridding a
cdms2.tvariable.TransientVariable instance using regridTool='regrid2'
results in a new array that is masked everywhere. regridTool='esmf'
and regridTool='libcf' both work as expected.
This is similar to the original test but we construct our own
uniform grid. This should passes.
"""
import cdms2 as cdms
import numpy as np
filename = cdat_info.get_sampledata_path() + '/clt.nc'
a=cdms.open(filename)
data=a('clt')[0,...]
print data.mask #verify this data is not masked
GRID = cdms.grid.createUniformGrid(-90.0, 23, 8.0, -180.0, 36, 10.0, order="yx", mask=None)
test_data=data.regrid(GRID,regridTool='regrid2')
# check that the mask does not extend everywhere...
self.assertNotEqual(test_data.mask.sum(), test_data.size)
if PLOT:
pylab.subplot(2, 1, 1)
pylab.pcolor(data[...])
pylab.title('data')
pylab.subplot(2, 1, 2)
pylab.pcolor(test_data[...])
pylab.title('test_data (interpolated data)')
pylab.show()
示例5: plotear
def plotear(xi,yi,zi):
# mask inner circle
interior1 = sqrt(((xi+1.5)**2) + (yi**2)) < 1.0
interior2 = sqrt(((xi-1.5)**2) + (yi**2)) < 1.0
zi[interior1] = ma.masked
zi[interior2] = ma.masked
p.figure(figsize=(16,10))
pyplot.jet()
max=2.8
min=0.4
steps = 50
levels=list()
labels=list()
for i in range(0,steps):
levels.append(int((max-min)/steps*100*i)*0.01+min)
for i in range(0,steps/2):
labels.append(levels[2*i])
CSF = p.contourf(xi,yi,zi,levels,norm=colors.LogNorm())
CS = p.contour(xi,yi,zi,levels, format='%.3f', labelsize='18')
p.clabel(CS,labels,inline=1,fontsize=9)
p.title('electrostatic potential of two spherical colloids, R=lambda/3',fontsize=24)
p.xlabel('z-coordinate (3*lambda)',fontsize=18)
p.ylabel('radial coordinate r (3*lambda)',fontsize=18)
# add a vertical bar with the color values
cbar = p.colorbar(CSF,ticks=labels,format='%.3f')
cbar.ax.set_ylabel('potential (reduced units)',fontsize=18)
cbar.add_lines(CS)
p.show()
示例6: main
def main():
pylab.ion();
ind = [0,];
ldft = [0,];
lfft = [0,];
lpfft = [0,]
# plot a graph Dft vs Fft, lists just support size until 2**9
for i in range(1, 9, 1):
t_before = time.clock();
dsprocessing.dspDft(rand(2**i).tolist());
dt = time.clock() - t_before;
ldft.append(dt);
print ("dft ", 2**i, dt);
#pylab.plot([2**i,], [time.clock()-t_before,]);
t_before = time.clock();
dsprocessing.dspFft(rand(2**i).tolist());
dt = time.clock() - t_before;
print ("fft ", 2**i, dt);
lfft.append(dt);
#pylab.plot([2**i,], [time.clock()-t_before,]);
ind.append(2**i);
# python fft just to compare
t_before = time.clock();
pylab.fft(rand(2**i).tolist());
dt = time.clock() - t_before;
lpfft.append(dt);
pylab.plot(ind, ldft);
pylab.plot(ind, lfft);
pylab.plot(ind, lpfft);
pylab.show();
return [ind, ldft, lfft, lpfft];
示例7: param_set_averages_plot
def param_set_averages_plot(results):
averages_ocr = [
a[1] for a in sorted(
param_set_averages(results, metric='ocr').items(),
key=lambda x: int(x[0].split('-')[1]))
]
averages_q = [
a[1] for a in sorted(
param_set_averages(results, metric='q').items(),
key=lambda x: int(x[0].split('-')[1]))
]
averages_mse = [
a[1] for a in sorted(
param_set_averages(results, metric='mse').items(),
key=lambda x: int(x[0].split('-')[1]))
]
fig = plt.figure(figsize=(6, 4))
# plt.tight_layout()
plt.plot(averages_ocr, label='OCR', linewidth=2.0)
plt.plot(averages_q, label='Q', linewidth=2.0)
plt.plot(averages_mse, label='MSE', linewidth=2.0)
plt.ylim([0, 1])
plt.xlabel(u'Paslėptų neuronų skaičius')
plt.ylabel(u'Vidurinė Q įverčio pokyčio reikšmė')
plt.grid(True)
plt.tight_layout()
plt.legend(loc='lower right')
plt.show()
示例8: plotHistogram
def plotHistogram(data, preTime):
pylab.figure(1)
pylab.hist(data, bins=10)
pylab.xlabel("Virus Population At End of Simulation")
pylab.ylabel("Number of Trials")
pylab.title("{0} Time Steps Before Treatment Simulation".format(preTime))
pylab.show()
示例9: test_mask_LUT
def test_mask_LUT(self):
"""
The masked image has a masked ring around 1.5deg with value -10
without mask the pixels should be at -10 ; with mask they are at 0
"""
x1 = self.ai.xrpd_LUT(self.data, 1000)
# print self.ai._lut_integrator.lut_checksum
x2 = self.ai.xrpd_LUT(self.data, 1000, mask=self.mask)
# print self.ai._lut_integrator.lut_checksum
x3 = self.ai.xrpd_LUT(self.data, 1000, mask=numpy.zeros(shape=self.mask.shape, dtype="uint8"), dummy= -20.0, delta_dummy=19.5)
# print self.ai._lut_integrator.lut_checksum
res1 = numpy.interp(1.5, *x1)
res2 = numpy.interp(1.5, *x2)
res3 = numpy.interp(1.5, *x3)
if logger.getEffectiveLevel() == logging.DEBUG:
pylab.plot(*x1, label="nomask")
pylab.plot(*x2, label="mask")
pylab.plot(*x3, label="dummy")
pylab.legend()
pylab.show()
raw_input()
self.assertAlmostEqual(res1, -10., 1, msg="Without mask the bad pixels are around -10 (got %.4f)" % res1)
self.assertAlmostEqual(res2, 0., 4, msg="With mask the bad pixels are actually at 0 (got %.4f)" % res2)
self.assertAlmostEqual(res3, -20., 4, msg="Without mask but dummy=-20 the dummy pixels are actually at -20 (got % .4f)" % res3)
示例10: cmap_plot
def cmap_plot(cmdLine):
pylab.figure(figsize=[5,10])
a=outer(ones(10),arange(0,1,0.01))
subplots_adjust(top=0.99,bottom=0.00,left=0.01,right=0.8)
maps=[m for m in cm.datad if not m.endswith("_r")]
maps.sort()
l=len(maps)+1
for i, m in enumerate(maps):
print m
subplot(l,1,i+1)
pylab.setp(pylab.gca(),xticklabels=[],xticks=[],yticklabels=[],yticks=[])
imshow(a,aspect='auto',cmap=get_cmap(m),origin="lower")
pylab.text(100.85,0.5,m,fontsize=10)
# render plot
if cmdLine:
pylab.show(block=True)
else:
pylab.ion()
pylab.plot([])
pylab.ioff()
status = 1
return status
示例11: plotAllWarmJumps
def plotAllWarmJumps():
jumpAddrs = np.array(getAllWarmJumpsAddr()).reshape((8, 18))
figure()
pcolor(jumpAddrs)
for (x, y), v in np.ndenumerate(jumpAddrs):
text(y + 0.125, x + 0.5, "0x%03x" % v)
show()
示例12: plot_heatingrate
def plot_heatingrate(data_dict, filename, do_show=True):
pl.figure(201)
color_list = ['b','r','g','k','y','r','g','b','k','y','r',]
fmtlist = ['s','d','o','s','d','o','s','d','o','s','d','o']
result_dict = {}
for key in data_dict.keys():
x = data_dict[key][0]
y = data_dict[key][1][:,0]
y_err = data_dict[key][1][:,1]
p0 = np.polyfit(x,y,1)
fit = LinFit(np.array([x,y,y_err]).transpose(), show_graph=False)
p1 = [0,0]
p1[0] = fit.param_dict[0]['Slope'][0]
p1[1] = fit.param_dict[0]['Offset'][0]
print fit
x0 = np.linspace(0,max(x))
cstr = color_list.pop(0)
fstr = fmtlist.pop(0)
lstr = key + " heating: {0:.2f} ph/ms".format((p1[0]*1e3))
pl.errorbar(x/1e3,y,y_err,fmt=fstr + cstr,label=lstr)
pl.plot(x0/1e3,np.polyval(p0,x0),cstr)
pl.plot(x0/1e3,np.polyval(p1,x0),cstr)
result_dict[key] = 1e3*np.array(fit.param_dict[0]['Slope'])
pl.xlabel('Heating time (ms)')
pl.ylabel('nbar')
if do_show:
pl.legend()
pl.show()
if filename != None:
pl.savefig(filename)
return result_dict
示例13: evaluate_result
def evaluate_result(data, target, result):
assert(data.shape[0] == target.shape[0])
assert(target.shape[0] == result.shape[0])
correct = np.where( result == target )
miss = np.where( result != target )
class_rate = float(correct[0].shape[0]) / target.shape[0]
print "Correct classification rate:", class_rate
#get the 3s
mask = np.where(target == wanted[0])
data_3_correct = data[np.intersect1d(mask[0],correct[0])]
data_3_miss = data[np.intersect1d(mask[0],miss[0])]
#get the 8s
mask = np.where(target == wanted[1])
data_8_correct = data[np.intersect1d(mask[0],correct[0])]
data_8_miss = data[np.intersect1d(mask[0],miss[0])]
#plot
plot.title("Scatter")
plot.xlabel("x_0")
plot.ylabel("x_1")
size = 20
plot.scatter(data_3_correct[:,0], data_3_correct[:,1], marker = "x", c = "r", s = size )
plot.scatter( data_3_miss[:,0], data_3_miss[:,1], marker = "x", c = "b", s = size )
plot.scatter(data_8_correct[:,0], data_8_correct[:,1], marker = "o", c = "r", s = size )
plot.scatter( data_8_miss[:,0], data_8_miss[:,1], marker = "o", c = "b", s = size )
plot.show()
示例14: _test_graph
def _test_graph():
i = 10000
x = np.linspace(0,3.7*pi,i)
y = (0.3*np.sin(x) + np.sin(1.3 * x) + 0.9 * np.sin(4.2 * x) + 0.06 *
np.random.randn(i))
y *= -1
x = range(i)
_max, _min = peakdetect(y,x,750, 0.30)
xm = [p[0] for p in _max]
ym = [p[1] for p in _max]
xn = [p[0] for p in _min]
yn = [p[1] for p in _min]
plot = pylab.plot(x,y)
pylab.hold(True)
pylab.plot(xm, ym, 'r+')
pylab.plot(xn, yn, 'g+')
_max, _min = peak_det_bad.peakdetect(y, 0.7, x)
xm = [p[0] for p in _max]
ym = [p[1] for p in _max]
xn = [p[0] for p in _min]
yn = [p[1] for p in _min]
pylab.plot(xm, ym, 'y*')
pylab.plot(xn, yn, 'k*')
pylab.show()
示例15: createPlot
def createPlot(dataY, dataX, ticksX, annotations, axisY, axisX, dostep, doannotate):
if not ticksX:
ticksX = dataX
if dostep:
py.step(dataX, dataY, where='post', linestyle='-', label=axisY) # where=post steps after point
else:
py.plot(dataX, dataY, marker='o', ms=5.0, linestyle='-', label=axisY)
if annotations and doannotate:
for note, x, y in zip(annotations, dataX, dataY):
py.annotate(note, (x, y), xytext=(2,2), xycoords='data', textcoords='offset points')
py.xticks(np.arange(1, len(dataX)+1), ticksX, horizontalalignment='left', rotation=30)
leg = py.legend()
leg.draggable()
py.xlabel(axisX)
py.ylabel('time (s)')
# Set X axis tick labels as rungs
#print zip(dataX, dataY)
py.draw()
py.show()
return