本文整理汇总了Python中pylab.savefig函数的典型用法代码示例。如果您正苦于以下问题:Python savefig函数的具体用法?Python savefig怎么用?Python savefig使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了savefig函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_pie_chart
def create_pie_chart(self, snapshot, filename=''):
"""
Create a pie chart that depicts the distribution of the allocated
memory for a given `snapshot`. The chart is saved to `filename`.
"""
try:
from pylab import figure, title, pie, axes, savefig
from pylab import sum as pylab_sum
except ImportError:
return self.nopylab_msg % ("pie_chart")
# Don't bother illustrating a pie without pieces.
if not snapshot.tracked_total:
return ''
classlist = []
sizelist = []
for k, v in list(snapshot.classes.items()):
if v['pct'] > 3.0:
classlist.append(k)
sizelist.append(v['sum'])
sizelist.insert(0, snapshot.asizeof_total - pylab_sum(sizelist))
classlist.insert(0, 'Other')
#sizelist = [x*0.01 for x in sizelist]
title("Snapshot (%s) Memory Distribution" % (snapshot.desc))
figure(figsize=(8, 8))
axes([0.1, 0.1, 0.8, 0.8])
pie(sizelist, labels=classlist)
savefig(filename, dpi=50)
return self.chart_tag % (self.relative_path(filename))
示例2: geweke_plot
def geweke_plot(data, name, format='png', suffix='-diagnostic', path='./', fontmap = None,
verbose=1):
# Generate Geweke (1992) diagnostic plots
if fontmap is None: fontmap = {1:10, 2:8, 3:6, 4:5, 5:4}
# Generate new scatter plot
figure()
x, y = transpose(data)
scatter(x.tolist(), y.tolist())
# Plot options
xlabel('First iteration', fontsize='x-small')
ylabel('Z-score for %s' % name, fontsize='x-small')
# Plot lines at +/- 2 sd from zero
pyplot((nmin(x), nmax(x)), (2, 2), '--')
pyplot((nmin(x), nmax(x)), (-2, -2), '--')
# Set plot bound
ylim(min(-2.5, nmin(y)), max(2.5, nmax(y)))
xlim(0, nmax(x))
# Save to file
if not os.path.exists(path):
os.mkdir(path)
if not path.endswith('/'):
path += '/'
savefig("%s%s%s.%s" % (path, name, suffix, format))
示例3: compareAnimals
def compareAnimals(animals, precision):
"""Assumes animals is a list of animals, precision an int >= 0
Builds a table of Euclidean distance between each animal"""
#Get labels for columns and rows
columnLabels = []
for a in animals:
columnLabels.append(a.getName())
rowLabels = columnLabels[:]
tableVals = []
#Get distances between pairs of animals
#For each row
for a1 in animals:
row = []
#For each column
for a2 in animals:
if a1 == a2:
row.append('--')
else:
distance = a1.distance(a2)
row.append(str(round(distance, precision)))
tableVals.append(row)
#Produce table
table = pylab.table(rowLabels = rowLabels,
colLabels = columnLabels,
cellText = tableVals,
cellLoc = 'center',
loc = 'center',
colWidths = [0.2]*len(animals))
table.scale(1, 2.5)
pylab.axis('off') #Don't display x and y-axes
pylab.savefig('distances')
示例4: simplegrid
def simplegrid():
nzones = 7
gr = gpu.grid(nzones, xmin=0, xmax=1)
gpu.drawGrid(gr, edgeTicks=0)
# label a few cell-centers
gpu.labelCenter(gr, nzones/2, r"$i$")
gpu.labelCenter(gr, nzones/2-1, r"$i-1$")
gpu.labelCenter(gr, nzones/2+1, r"$i+1$")
# label a few edges
gpu.labelEdge(gr, nzones/2, r"$i-1/2$")
gpu.labelEdge(gr, nzones/2+1, r"$i+1/2$")
# draw an average quantity
gpu.drawCellAvg(gr, nzones/2, 0.4, color="r")
gpu.labelCellAvg(gr, nzones/2, 0.4, r"$\,\langle a \rangle_i$", color="r")
pylab.axis([gr.xmin-1.5*gr.dx,gr.xmax+1.5*gr.dx, -0.25, 1.5])
pylab.axis("off")
pylab.subplots_adjust(left=0.05,right=0.95,bottom=0.05,top=0.95)
f = pylab.gcf()
f.set_size_inches(10.0,2.5)
pylab.savefig("simplegrid2.png")
pylab.savefig("simplegrid2.eps")
示例5: plotKerasExperimentcifar10
def plotKerasExperimentcifar10():
index = 5
for experiment_number in range(1,index+1):
outputPath_part_final = os.path.realpath( "/home/jie/docker_folder/random_keras/output_cifar10_mlp/errorFile/hyperopt_experiment_withoutparam_accuracy" + str(experiment_number) + ".txt")
output_plot = os.path.realpath(
"/home/jie/docker_folder/random_keras/output_cifar10_mlp/errorFile/plotErrorCurve" + str(experiment_number) + ".pdf")
df = pd.read_csv(outputPath_part_final,delimiter='\t',header=None)
df.drop(df.columns[[600]], axis=1, inplace=True)
i=1
epochnum = []
while i<=250:
epochnum.append(i)
i = i+1
i=0
while i<10:
df_1=df[df.columns[0:250]].ix[i]
np.reshape(df_1, (1,250))
plt.plot(epochnum,df_1)
i = i+1
# plt.show()
# plt.show()
plt.savefig(output_plot)
plt.close()
示例6: plot_sphere_x
def plot_sphere_x( s, fname ):
""" put plot of ionization fractions from sphere `s` into fname """
plt.figure()
s.Edges.units = 'kpc'
s.r_c.units = 'kpc'
xx = s.r_c
L = s.Edges[-1]
plt.plot( xx, np.log10( s.xHe1 ),
color='green', ls='-', label = r'$x_{\rm HeI}$' )
plt.plot( xx, np.log10( s.xHe2 ),
color='green', ls='--', label = r'$x_{\rm HeII}$' )
plt.plot( xx, np.log10( s.xHe3 ),
color='green', ls=':', label = r'$x_{\rm HeIII}$' )
plt.plot( xx, np.log10( s.xH1 ),
color='red', ls='-', label = r'$x_{\rm HI}$' )
plt.plot( xx, np.log10( s.xH2 ),
color='red', ls='--', label = r'$x_{\rm HII}$' )
plt.xlim( -L/20, L+L/20 )
plt.xlabel( 'r_c [kpc]' )
plt.ylim( -4.5, 0.2 )
plt.ylabel( 'log 10 ( x )' )
plt.grid()
plt.legend(loc='best', ncol=2)
plt.tight_layout()
plt.savefig( 'doc/img/x_' + fname )
示例7: plotEventFlop
def plotEventFlop(library, num, eventNames, sizes, times, events, filename = None):
from pylab import legend, plot, savefig, semilogy, show, title, xlabel, ylabel
import numpy as np
arches = sizes.keys()
bs = events[arches[0]].keys()[0]
data = []
names = []
for event, color in zip(eventNames, ['b', 'g', 'r', 'y']):
for arch, style in zip(arches, ['-', ':']):
if event in events[arch][bs]:
names.append(arch+'-'+str(bs)+' '+event)
data.append(sizes[arch][bs])
data.append(1e-3*np.array(events[arch][bs][event])[:,1])
data.append(color+style)
else:
print 'Could not find %s in %s-%d events' % (event, arch, bs)
semilogy(*data)
title('Performance on '+library+' Example '+str(num))
xlabel('Number of Dof')
ylabel('Computation Rate (GF/s)')
legend(names, 'upper left', shadow = True)
if filename is None:
show()
else:
savefig(filename)
return
示例8: manhattonPlot
def manhattonPlot(phenotype_ID, pvalues_lm, ouFprefix, pos, chromBounds):
for ip, p_ID in enumerate(phenotype_ID):
pl.figure(figsize=[12,4])
plot_manhattan(posCum=pos['pos_cum'],pv=pvalues_lm[p_ID].values,chromBounds=chromBounds,thr_plotting=0.05)
pl.title(p_ID)
pl.savefig(ouFprefix + '.' + p_ID + '.pdf')
pl.close('all')
示例9: draw
def draw(inF):
G = nx.Graph()
inFile = open(inF)
S = set()
for line in inFile:
line = line.strip()
fields = line.split('\t')
for item in fields:
S.add(item)
inFile.close()
L = list(S)
G.add_nodes_from(L)
LC = []
for x in L:
if x == 'EGR1' or x == 'RBM20':
LC.append('r')
else:
LC.append('w')
inFile = open(inF)
for line in inFile:
line = line.strip()
fields = line.split('\t')
for i in range(len(fields)-1):
G.add_edge(fields[i], fields[i+1])
inFile.close()
nx.draw_networkx(G,pos=nx.spring_layout(G), node_size=800, font_size=6, node_color=LC)
limits=plt.axis('off')
plt.savefig(inF + '.pdf')
示例10: bar_plot_raw
def bar_plot_raw(inF):
ouF = inF + '.pdf'
X = []
Y = []
inFile = open(inF)
for line in inFile:
line = line.strip()
fields = line.split('\t')
X.append(int(fields[0]))
#Y.append(math.log(int(fields[1])+1,2))
Y.append(int(fields[1]))
fig = pl.figure()
N = len(X)
ax = fig.add_subplot(111)
ax.set_xlim(0,N + 1)
ax.set_xticks(range(0,N+2))
ax.set_xticklabels([0,1] + ['']*(N-1) + [max(X)])
ax.bar(range(1,N+1), Y, align='center')
ax.set_xlabel('Start position in the protein')
ax.set_ylabel('Number of peptides')
pl.setp(ax.get_xticklines(),visible=False)
pl.setp(ax.get_xticklabels(),fontsize=6)
ax.get_children()[2].set_color('g')
ax.get_children()[3].set_color('r')
pl.savefig(ouF)
inFile.close()
示例11: SingleTraitLM
def SingleTraitLM(inF1, inF2, ouF):
geno_reader = gr.genotype_reader_tables(inF1)
pheno_reader = phr.pheno_reader_tables(inF2)
dataset = data.QTLData(geno_reader=geno_reader,pheno_reader=pheno_reader)
geno = dataset.getGenotypes()
position = dataset.getPos()
pos,chromBounds = data_util.estCumPos(position=position,offset=0)
ouFile = open(ouF, 'w')
P_max = len(dataset.phenotype_ID)
phenotype_ID = dataset.phenotype_ID[0:P_max]
for p_ID in phenotype_ID[0:]:
#phenotype_vals, sample_idx = dataset.getPhenotypes([pI], center=False)
phenotype_vals, sample_idx = dataset.getPhenotypes([p_ID])
phenotype_vals_ranks = preprocess.rankStandardizeNormal(phenotype_vals.values)
lm_ranks = qtl.test_lm(snps=geno[sample_idx],pheno=phenotype_vals_ranks)
pvalues_lm_ranks = pd.DataFrame(data=lm_ranks.pvalues.T,index=dataset.geno_ID,columns=[p_ID])
pvt = lm_ranks.pvalues.T
for i in xrange(pvt.shape[0]):
p = pvt[i,0]
if p <= SIG:
ouFile.write('\t'.join([position['chrom'][i], str(position['pos'][i]), str(p), p_ID]) + '\n')
ouFile.close()
manhattonPlot(['NMD'],pvalues_lm_ranks,inF2,pos, chromBounds)
pl.figure(figsize=[12,4])
qqplot(pvalues_lm_ranks['NMD'].values)
pl.savefig('pvalues-qqplot.pdf')
示例12: density
def density(ouF, bandwidth):
AX = []
df = pd.read_table('Mouse_Gene_Promoter_Cov_ProteinCoding-Norm', header=0)
Sample = df.columns[4:]
#Sample2 = Sample
Sample2 = [' '.join(x.split('_')[0:-1]) for x in df.columns[4:]]
fig = plt.figure()
ax = fig.add_axes([0.15,0.15,0.8,0.8])
for i in range(4,df.shape[1]):
AX.append(sns.kdeplot(np.log2(df.ix[:,i]), shade=True, color=LineColor(i-4), legend=True, label=GetLabel(i-4, Sample2), bw=bandwidth))
'''
patch1 = mpatches.Patch(color='r', label='Tspan8 negative MHCII low')
patch2 = mpatches.Patch(color='b', label='Tspan8 negative MHCII high')
patch3 = mpatches.Patch(color='g', label='Tspan8 positive MHCII low')
patch4 = mpatches.Patch(color='m', label='Tspan8 positive MHCII high')
plt.legend(handles=[patch1, patch2, patch3, patch4])
'''
ax.set_xlabel('Normalized number of reads (log2), bandwidth=%s'%bandwidth)
ax.set_ylabel('Density of gene numbers')
ax.set_xlim(0, ax.get_xlim()[1])
plt.savefig(ouF +'-bw_'+ str(bandwidth) + '.pdf')
示例13: makeimg
def makeimg(wav):
global callpath
global imgpath
fs, frames = wavfile.read(os.path.join(callpath, wav))
pylab.ion()
# generate specgram
pylab.figure(1)
# generate specgram
pylab.specgram(
frames,
NFFT=256,
Fs=22050,
detrend=pylab.detrend_none,
window=numpy.hamming(256),
noverlap=192,
cmap=pylab.get_cmap('Greys'))
x_width = len(frames)/fs
pylab.ylim([0,11025])
pylab.xlim([0,round(x_width,3)-0.006])
img_path = os.path.join(imgpath, wav.replace(".wav",".png"))
pylab.savefig(img_path)
return img_path
示例14: __call__
def __call__(self, n):
if len(self.f.shape) == 3:
# f = f[x,v,t], 2 dim in phase space
ft = self.f[n,:,:]
pylab.pcolormesh(self.X, self.V, ft.T, cmap = 'jet')
pylab.colorbar()
pylab.clim(0,0.38) # for Landau test case
pylab.grid()
pylab.axis([self.xmin, self.xmax, self.ymin, self.ymax])
pylab.xlabel('$x$', fontsize = 18)
pylab.ylabel('$v$', fontsize = 18)
pylab.title('$N_x$ = %d, $N_v$ = %d, $t$ = %2.1f' % (self.x.N, self.v.N, self.it*self.t.width))
pylab.savefig(self.path + self.filename)
pylab.clf()
return None
if len(self.f.shape) == 2:
# f = f[x], 1 dim in phase space
ft = self.f[n,:]
pylab.plot(self.x.gridvalues,ft,'ob')
pylab.grid()
pylab.axis([self.xmin, self.xmax, self.ymin, self.ymax])
pylab.xlabel('$x$', fontsize = 18)
pylab.ylabel('$f(x)$', fontsize = 18)
pylab.savefig(self.path + self.filename)
return None
示例15: Doplots_monthly
def Doplots_monthly(mypathforResults,PlottingDF,variable_to_fill, Site_ID,units,item):
ANN_label=str(item+"_NN") #Do Monthly Plots
print "Doing MOnthly plot"
#t = arange(1, 54, 1)
NN_label='Fc'
Plottemp = PlottingDF[[NN_label,item]][PlottingDF['day_night']!=1]
#Plottemp = PlottingDF[[NN_label,item]].dropna(how='any')
figure(1)
pl.title('Nightime ANN v Tower by year-month for '+item+' at '+Site_ID)
try:
xdata1a=Plottemp[item].groupby([lambda x: x.year,lambda x: x.month]).mean()
plotxdata1a=True
except:
plotxdata1a=False
try:
xdata1b=Plottemp[NN_label].groupby([lambda x: x.year,lambda x: x.month]).mean()
plotxdata1b=True
except:
plotxdata1b=False
if plotxdata1a==True:
pl.plot(xdata1a,'r',label=item)
if plotxdata1b==True:
pl.plot(xdata1b,'b',label=NN_label)
pl.ylabel('Flux')
pl.xlabel('Year - Month')
pl.legend()
pl.savefig(mypathforResults+'/ANN and Tower plots by year and month for variable '+item+' at '+Site_ID)
#pl.show()
pl.close()
time.sleep(1)